215 research outputs found
A new qualitative RT-PCR assay detecting SARS-CoV-2
The world is facing an exceptional pandemic caused by SARS-CoV-2. To allow the diagnosis of COVID-19 infections, several assays based on the real-time PCR technique have been proposed. The requests for diagnosis are such that it was immediately clear that the choice of the most suitable method for each microbiology laboratory had to be based, on the one hand, on the availability of materials, and on the other hand, on the personnel and training priorities for this activity. Unfortunately, due to high demand, the shortage of commercial diagnostic kits has also become a major problem. To overcome these critical issues, we have developed a new qualitative RT-PCR probe. Our system detects three genes—RNA-dependent RNA polymerase (RdRp), envelope (E) and nucleocapsid (N)—and uses the β-actin gene as an endogenous internal control. The results from our assay are in complete agreement with the results obtained using a commercially available kit, except for two samples that did not pass the endogenous internal control. The coincidence rate was 0.96. The LoD of our assay was 140 cp/reaction for N and 14 cp/reaction for RdRp and E. Our kit was designed to be open, either for the nucleic acid extraction step or for the RT-PCR assay, and to be carried out on several instruments. Therefore, it is free from the industrial production logics of closed systems, and conversely, it is hypothetically available for distribution in large quantities to any microbiological laboratory. The kit is currently distributed worldwide (called MOLgen-COVID-19; Adaltis). A new version of the kit for detecting the S gene is also available
Blow-up solutions for linear perturbations of the Yamabe equation
For a smooth, compact Riemannian manifold (M,g) of dimension N \geg 3, we
are interested in the critical equation where \Delta_g is the Laplace--Beltrami
operator, S_g is the Scalar curvature of (M,g), , and
is a small parameter
Efficient Information-Flow Verification under Speculative Execution
We study the formal verification of information-flow properties in the presence of speculative execution and side-channels. First, we present a formal model of speculative execution semantics. This model can be parameterized by the depth of speculative execution and is amenable to a range of verification techniques. Second, we introduce a novel notion of information leakage under speculation, which is parameterized by the information that is available to an attacker through side-channels. Finally, we present one verification technique that uses our formalism and can be used to detect information leaks under speculation through cache side-channels, and can decide whether these are only possible under speculative execution. We implemented an instance of this verification technique that combines taint analysis and safety model checking.
We evaluated this approach on a range of examples that have been proposed as benchmarks for mitigations of the Spectre vulnerability, and show that our approach correctly
identifies all information leaks
The Influence of Mineralization on Intratrabecular Stress and Strain Distribution in Developing Trabecular Bone
The load-transfer pathway in trabecular bone is largely determined by its architecture. However, the influence of variations
in mineralization is not known. The goal of this study was to examine the influence of inhomogeneously distributed degrees
of mineralization (DMB) on intratrabecular stresses and strains. Cubic mandibular condylar bone specimens from fetal and newborn
pigs were used. Finite element models were constructed, in which the element tissue moduli were scaled to the local DMB. Disregarding
the observed distribution of mineralization was associated with an overestimation of average equivalent strain and underestimation
of von Mises equivalent stress. From the surface of trabecular elements towards their core the strain decreased irrespective
of tissue stiffness distribution. This indicates that the trabecular elements were bent during the compression experiment.
Inhomogeneously distributed tissue stiffness resulted in a low stress at the surface that increased towards the core. In contrast,
disregarding this tissue stiffness distribution resulted in high stress at the surface which decreased towards the core. It
was concluded that the increased DMB, together with concurring alterations in architecture, during development leads to a
structure which is able to resist increasing loads without an increase in average deformation, which may lead to damage
Endothelial and Smooth Muscle Cells from Abdominal Aortic Aneurysm Have Increased Oxidative Stress and Telomere Attrition
Background: Abdominal aortic aneurysm (AAA) is a complex multi-factorial disease with life-threatening complications. AAA is typically asymptomatic and its rupture is associated with high mortality rate. Both environmental and genetic risk factors are involved in AAA pathogenesis. Aim of this study was to investigate telomere length (TL) and oxidative DNA damage in paired blood lymphocytes, aortic endothelial cells (EC), vascular smooth muscle cells (VSMC), and epidermal cells from patients with AAA in comparison with matched controls. Methods: TL was assessed using a modification of quantitative (Q)-FISH in combination with immunofluorescence for CD31 or α-smooth muscle actin to detect EC and VSMC, respectively. Oxidative DNA damage was investigated by immunofluorescence staining for 7, 8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG). Results and Conclusions: Telomeres were found to be significantly shortened in EC, VSMC, keratinocytes and blood lymphocytes from AAA patients compared to matched controls. 8-oxo-dG immunoreactivity, indicative of oxidative DNA damage, was detected at higher levels in all of the above cell types from AAA patients compared to matched controls. Increased DNA double strand breaks were detected in AAA patients vs controls by nuclear staining for γ-H2AX histone. There was statistically significant inverse correlation between TL and accumulation of oxidative DNA damage in blood lymphocytes from AAA patients. This study shows for the first time that EC and VSMC from AAA have shortened telomeres and oxidative DNA damage. Similar findings were obtained with circulating lymphocytes and keratinocytes, indicating the systemic nature of the disease. Potential translational implications of these findings are discussed. © 2012 Cafueri et al
Effect of repeated in vivo microCT imaging on the properties of the mouse tibia
In longitudinal studies, in vivo micro-Computed Tomography (microCT) imaging is used to investigate bone changes over time due to interventions in mice. However, ionising radiation can provoke significant variations in bone morphometric parameters. In a previous study, we evaluated the effect of reducing the integration time on the properties of the mouse tibia measured from microCT images. A scanning procedure (100 ms integration time, 256 mGy nominal radiation dose) was selected as the best compromise between image quality and radiation dose induced on the animal. In this work, the effect of repeated in vivo scans has been evaluated using the selected procedure. The right tibia of twelve female C57BL/6 (six wild type, WT, six ovariectomised, OVX) and twelve BALB/c (six WT, six OVX) mice was scanned every two weeks, starting at week 14 of age. At week 24, mice were sacrificed and both tibiae were scanned. Standard trabecular and cortical morphometric parameters were calculated. The spatial distribution of densitometric parameters (e.g. bone mineral content) was obtained by dividing each tibia in 40 partitions. Stiffness and strength in compression were estimated using homogeneous linear elastic microCT-based micro-Finite Element models. Differences between right (irradiated) and left (non-irradiated control) tibiae were evaluated for each parameter. The irradiated tibiae had higher Tb.Th (+3.3%) and Tb.Sp (+11.6%), and lower Tb.N (-14.2%) compared to non-irradiated tibiae, consistently across both strains and intervention groups. A reduction in Tb.BV/TV (-14.9%) was also observed in the C57BL/6 strain. In the OVX group, a small reduction was also observed in Tt.Ar (-5.0%). In conclusion, repeated microCT scans (at 256 mGy, 5 scans, every two weeks) had limited effects on the mouse tibia, compared to the expected changes induced by bone treatments. Therefore, the selected scanning protocol is acceptable for measuring the effect of bone interventions in vivo
Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models
New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load–displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53–0.65, average error of 13–17%). A lower correlation was found for failure load (R2 = 0.21–0.48, average error of 9–15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75–0.80 for stiffness, R2 = 0.55–0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia
- …