6 research outputs found

    Muscarinic receptor antagonists and airway inflammation: A systematic review on pharmacological models

    Get PDF
    : Airway inflammation is crucial in the pathogenesis of many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Current evidence supports the beneficial impact of muscarinic receptor antagonists against airway inflammation from bench-to-bedside. Considering the numerous sampling approaches and the ethical implications required to study inflammation in vivo in patients, the use of pre-clinical models is inevitable. Starting from our recently published systematic review concerning the impact of muscarinic antagonists, we have systematically assessed the current pharmacological models of airway inflammation and provided an overview on the advances in in vitro and ex vivo approaches. The purpose of in vitro models is to recapitulate selected pathophysiological parameters or processes that are crucial to the development of new drugs within a controlled environment. Nevertheless, immortalized cell lines or primary airway cells present major limitations, including the inability to fully replicate the conditions of the corresponding cell types within a whole organism. Induced animal models are extensively used in research in the attempt to replicate a respiratory condition reflective of a human pathological state, although considering animal models with spontaneously occurring respiratory diseases may be more appropriate since most of the clinical features are accompanied by lung pathology resembling that of the human condition. In recent years, three-dimensional organoids have become an alternative to animal experiments, also because animal models are unable to fully mimic the complexity of human pulmonary diseases. Ex vivo studies performed on human isolated airways have a superior translational value compared to in vitro and animal models, as they retain the morphology and the microenvironment of the lung in vivo. In the foreseeable future, greater effort should be undertaken to rely on more physiologically relevant models, that provide translational value into clinic and have a direct impact on patient outcomes

    Investigational Treatments in Phase I and II Clinical Trials: A Systematic Review in Asthma

    Get PDF
    : Inhaled corticosteroids (ICS) remain the mainstay of asthma treatment, along with bronchodilators serving as control agents in combination with ICS or reliever therapy. Although current pharmacological treatments improve symptom control, health status, and the frequency and severity of exacerbations, they do not really change the natural course of asthma, including disease remission. Considering the highly heterogeneous nature of asthma, there is a strong need for innovative medications that selectively target components of the inflammatory cascade. The aim of this review was to systematically assess current investigational agents in Phase I and II randomised controlled trials (RCTs) over the last five years. Sixteen classes of novel therapeutic options were identified from 19 RCTs. Drugs belonging to different classes, such as the anti-interleukin (IL)-4Rα inhibitors, anti-IL-5 monoclonal antibodies (mAbs), anti-IL-17A mAbs, anti-thymic stromal lymphopoietin (TSLP) mAbs, epithelial sodium channel (ENaC) inhibitors, bifunctional M3 receptor muscarinic antagonists/β2-adrenoceptor agonists (MABAs), and anti-Fel d 1 mAbs, were found to be effective in the treatment of asthma, with lung function being the main assessed outcome across the RCTs. Several novel investigational molecules, particularly biologics, seem promising as future disease-modifying agents; nevertheless, further larger studies are required to confirm positive results from Phase I and II RCTs

    The Impact of Corticosteroids on Human Airway Smooth Muscle Contractility and Airway Hyperresponsiveness: A Systematic Review

    Get PDF
    Classically, the effects elicited by corticosteroids (CS) are mediated by the binding and activation of cytosolic glucocorticoid receptors (GR). However, several of the non-genomic effects of CS seem to be mediated by putative non-classic membrane receptors characterized by pharmacological properties that are different from those of classic cytosolic GR. Since pre-clinical findings suggest that inhaled CS (ICS) may also regulate the bronchial contractile tone via putative CS membrane-associate receptors, the aim of this review was to systematically report and discuss the impact of CS on human airway smooth muscle (ASM) contractility and airway hyperresponsiveness (AHR). Current evidence indicates that CS have significant genomic/non-genomic beneficial effects on human ASM contractility and AHR, regardless of their anti-inflammatory effects. CS are effective in reducing either the expression, synthesis or activity of α-actin, CD38, inositol phosphate, myosin light chain kinase, and ras homolog family member A in response to several pro-contractile stimuli; overall these effects are mediated by the genomic action of CS. Moreover, CS elicited a strong bronchorelaxant effect via the rapid activation of the Gsα–cyclic-adenosine-monophosphate–protein-kinase-A pathway in hyperresponsive airways. The possibility of modulating the dose of the ICS in a triple ICS/long-acting β2-adrenoceptor agonist/long-acting muscarinic antagonist fixed-dose combination supports the use of a Triple MAintenance and Reliever Therapy (TriMART) in those asthmatic patients at Step 3–5 who may benefit from a sustained bronchodilation and have been suffering from an increased parasympathetic tone

    Inflammatory and contractile profile in LPS-challenged equine isolated bronchi: Evidence for IL-6 as a potential target against AHR in equine asthma

    No full text
    Background: Airway inflammation and airway hyperresponsiveness (AHR) are pivotal characteristics of equine asthma. Lipopolysaccharide (LPS) may have a central role in modulating airway inflammation and dysfunction. Therefore, the aim of this study was to match the inflammatory and contractile profile in LPS-challenged equine isolated bronchi to identify molecular targets potentially suitable to counteract AHR in asthmatic horses. Methods: Equine isolated bronchi were incubated overnight with LPS (0.1-100 ng/ml). The contractile response to electrical field stimulation (EFS) and the levels of cytokines, chemokines, and neurokinin A (NKA) were quantified. The role of capsaicin sensitive-sensory nerves, neurokinin-2 (NK2) receptor, transient receptor potential vanilloid type 1 receptors (TRPV1), and epithelium were also investigated. Results: LPS 1 ng/ml elicited AHR to EFS (+238.17 ± 25.20% P < 0.001 vs. control). LPS significantly (P < 0.05 vs. control) increased the levels of IL-4 (+36.08 ± 1.62%), IL-5 (+38.60 ± 3.58%), IL-6 (+33.79 ± 2.59%), IL-13 (+40.91 ± 1.93%), IL-1β (+1650.16 ± 71.16%), IL-33 (+88.14 ± 8.93%), TGF-β (22.29 ± 1.03%), TNF-α (+56.13 ± 4.61%), CXCL-8 (+98.49 ± 17.70%), EOTAXIN (+32.26 ± 2.27%), MCP-1 (+49.63 ± 4.59%), RANTES (+36.38 ± 2.24%), and NKA (+112.81 ± 6.42%). Capsaicin sensitive-sensory nerves, NK2 receptor, and TRPV1 were generally involved in the LPS-mediated inflammation. Epithelium removal modulated the release of IL-1β, IL-33, and TGF-β. Only the levels of IL-6 fitted with AHR to a wide range of EFS frequencies, an effect significantly (P < 0.05) inhibited by anti-IL-6 antibody; exogenous IL-6 induced significant (P < 0.05) AHR to EFS similar to that elicited by LPS. Conclusion: Targeting IL-6 with specific antibody may represent an effective strategy to treat equine asthma, especially in those animals suffering from severe forms of this disease

    Impact of Sex on Proper Use of Inhaler Devices in Asthma and COPD: A Systematic Review and Meta-Analysis

    Get PDF
    Despite females being more often affected by asthma than males and the prevalence of COPD rising in females, conflicting evidence exists as to whether sex may modulate the correct inhaler technique. The aim of this study was to assess the impact of sex on the proper use of inhaler devices in asthma and COPD. A pairwise meta-analysis was performed on studies enrolling adult males and females with asthma or COPD and reporting data of patients making at least one error by inhaler device type (DPI, MDI, and SMI). The data of 6,571 patients with asthma or COPD were extracted from 12 studies. A moderate quality of evidence (GRADE +++) indicated that sex may influence the correct use of inhaler device in both asthma and COPD. The critical error rate was higher in females with asthma (OR 1.31, 95%CI 1.14-1.50) and COPD (OR 1.80, 95%CI 1.22-2.67) using DPI vs. males (p < 0.01). In addition, the use of SMI in COPD was associated with a greater rate of critical errors in females vs. males (OR 5.36, 95%CI 1.48-19.32; p < 0.05). No significant difference resulted for MDI. In conclusion, choosing the right inhaler device in agreement with sex may optimize the pharmacological treatment of asthma and COPD
    corecore