20 research outputs found

    Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner

    No full text
    Tobacco addiction is a complex form of dependence process that leads high relapse rates in people seeking to stop smoking. Nicotine elicits its primary effects on neuronal nicotinic cholinergic receptors (nAChRs), alters brain reward systems, and induces long-term changes during chronic nicotine use and withdrawal. We analysed the effects of chronic nicotine treatment and withdrawal on the mesocorticolimbic pathway (a brain reward circuit in which addictive drugs induce widespread adaptations) by analysing the expression of nAChRs in the midbrain, striatum and prefrontal cortex (PFC) of mice receiving intravenous infusions of nicotine (4 mg/kg/h) or saline (control) for 14 days and mice sacrified two hours, and one, four and 14 days after treatment withdrawal. We biochemically fractionated whole tissue homogenates in order to obtain crude synaptosomal membranes. Western blotting analyses of these membrane fractions, ligand binding and immunoprecipitation studies, showed that chronic nicotine up-regulates heteromeric β2∗nAChRs in all three mesocorticolimbic areas, and that these receptors are rapidly removed from synapses upon the cessation of nicotine treatment. The extent of nicotine-induced nAChR up-regulation, and the time course of its reversal were comparable in all three areas. We also analysed the expression of glutamate receptor subunits (GluRs) and scaffold proteins, and found that it was altered in an area-specific manner during nicotine exposure and withdrawal. As the functional properties of GluRs are determined by their subunit composition, the observed changes in subunit expression may indicate alterations in the excitability of mesocorticolimbic circuitry, and this may underlie the long-term biochemical and behavioural effects of nicotine dependence

    A comparative study of the effects of the intravenous self-administration or subcutaneous minipump infusion of nicotine on the expression of brain neuronal nicotinic receptor subtypes.

    No full text
    Long-term nicotine exposure changes neuronal acetylcholine nicotinic receptor (nAChR) subtype expression in the brains of smokers and experimental animals. The aim of this study was to investigate nicotine-induced changes in nAChR expression in two models commonly used to describe the effects of nicotine in animals: operant (two-lever presses) intravenous selfadministration (SA) and passive subcutaneous nicotine administration via an osmotic minipump (MP). In the MP group, alpha4beta2 nAChRs were up-regulated in all brain regions, alpha6beta2* nAChRs were down-regulated in the nucleus accumbens (NAc) and caudate-putamen, and alpha7 nAChRs were up-regulated in the caudal cerebral cortex (CCx); the up-regulation of alpha4beta2alpha5 nAChRs in the CCx was also suggested. In the SA group, alpha4beta2 up-regulation was lower and limited to the CCx and NAc; there were no detectable changes in alpha6beta2* or alpha7 nACRs. In the CCx of the MP rats, there was a close correlation between the increase in alpha4beta2 binding and alpha4 and beta2 subunit levels measured by means of Western blotting, demonstrating that the up-regulation was due to an increase in alpha4beta2 proteins. Western blotting also showed that the increase in the beta2 subunit exceeded that of the alpha4 subunit, suggesting that a change in alpha4beta2 stoichiometry may occur in vivo as has been shown in vitro. These results show that nicotine has an area-specific effect on receptor subtypes, regardless of its administration route, but the effect is quantitatively greater in the case of MP administration

    The Novel α7β2-Nicotinic Acetylcholine Receptor Subtype Is Expressed In Mouse And Human Basal Forebrain: Biochemical And Pharmacological Characterization

    No full text
    We examined α7β2-nicotinic acetylcholine receptor (α7β2-nAChR) expression in mammalian brain and compared pharmacological profiles of homomeric α7- nAChRs and α7β2-nAChRs. α-Bungarotoxin affinity purification or immunoprecipitation with anti-α7 subunit antibodies (Abs) was used to isolate nAChRs containing α7 subunits from mouse or human brain samples. α7β2-nAChRs were detected in forebrain, but not other tested regions, from both species, based on Western blot analysis of isolates using β2 subunit-specific Abs. Ab specificity was confirmed in control studies using subunit-null mutant mice or cell lines heterologously expressing specific human nAChR subtypes and subunits. Functional expression in Xenopus oocytes of concatenated pentameric (α7) 5-, (α7)4(β2) 1-, and (α7)3(β2) 2-nAChRs was confirmed using two-electrode voltage clamp recording of responses to nicotinic ligands. Importantly, pharmacological profiles were indistinguishable for concatenated (α7)5-nAChRs or for homomeric α7-nAChRs constituted from unlinked α7 subunits. Pharmacological profiles were similar for (α7)5-, (α7)4(β 2)1-, and (α7) 3(β2)2-nAChRs except for diminished efficacy of nicotine (normalized to acetylcholine efficacy) at α7β2- versus α7-nAChRs. This study represents the first direct confirmation of α7β 2-nAChR expression in human and mouse forebrain, supporting previous mouse studies that suggested relevance of α7β2- nAChRs in Alzheimer disease etiopathogenesis. These data also indicate that α7β2-nAChR subunit isoforms with different α7/β2 subunit ratios have similar pharmacological profiles to each other and to α7 homopentameric nAChRs. This supports the hypothesis that α7β 2-nAChR agonist activation predominantly or entirely reflects binding to α7/α7 subunit interface sites. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics

    Valuable effect of Manuka Honey in increasing the printability and chondrogenic potential of a naturally derived bioink

    No full text
    Hydrogel-based bioinks are the main formulations used for Articular Cartilage (AC) regeneration due to their similarity to chondral tissue in terms of morphological and mechanical properties. However, the main challenge is to design and formulate bioinks able to allow reproducible additive manufacturing and fulfil the biological needs for the required tissue. In our work, we investigated an innovative Manuka honey (MH)-loaded photocurable gellan gum methacrylated (GGMA) bioink, encapsulating mesenchymal stem cells differentiated in chondrocytes (MSCs-C), to generate 3D bioprinted construct for AC studies. We demonstrated the beneficial effect of MH incorporation on the bioink printability, leading to the obtainment of a more homogenous filament extrusion and therefore a better printing resolution. Also, GGMA-MH formulation showed higher viscoelastic properties, presenting complex modulus G* values of similar to 1042 Pa, compared to similar to 730 Pa of GGMA. Finally, MH-enriched bioink induced a higher expression of chondrogenic markers col2a1 (14-fold), sox9 (3-fold) and acan (4-fold) and AC ECM main element production (proteoglycans and collagen)
    corecore