59 research outputs found

    Improved annotation with <i>de novo</i> transcriptome assembly in four social amoeba species

    Get PDF
    Background: Annotation of gene models and transcripts is a fundamental step in genome sequencing projects. Often this is performed with automated prediction pipelines, which can miss complex and atypical genes or transcripts. RNA sequencing (RNA-seq) data can aid the annotation with empirical data. Here we present de novo transcriptome assemblies generated from RNA-seq data in four Dictyostelid species: D. discoideum, P. pallidum, D. fasciculatum and D. lacteum. The assemblies were incorporated with existing gene models to determine corrections and improvement on a whole-genome scale. This is the first time this has been performed in these eukaryotic species. Results: An initial de novo transcriptome assembly was generated by Trinity for each species and then refined with Program to Assemble Spliced Alignments (PASA). The completeness and quality were assessed with the Benchmarking Universal Single-Copy Orthologs (BUSCO) and Transrate tools at each stage of the assemblies. The final datasets of 11,315-12,849 transcripts contained 5,610-7,712 updates and corrections to >50% of existing gene models including changes to hundreds or thousands of protein products. Putative novel genes are also identified and alternative splice isoforms were observed for the first time in P. pallidum, D. lacteum and D. fasciculatum. Conclusions: In taking a whole transcriptome approach to genome annotation with empirical data we have been able to enrich the annotations of four existing genome sequencing projects. In doing so we have identified updates to the majority of the gene annotations across all four species under study and found putative novel genes and transcripts which could be worthy for follow-up. The new transcriptome data we present here will be a valuable resource for genome curators in the Dictyostelia and we propose this effective methodology for use in other genome annotation projects

    Comment on "Widespread RNA and DNA sequence differences in the human transcriptome"

    No full text
    Li et al. (Research Articles, 1 July 2011, p. 53; published online 19 May 2011) reported widespread differences between the RNA and DNA sequences of the same human cells, including all 12 possible mismatch types. Before accepting such a fundamental claim, a deeper analysis of the sequencing data is required to discern true differences between RNA and DNA from potential artifacts

    RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself

    No full text
    Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1(E861A), where E861A denotes Glu(861)→Ala(861)). Adar1(E861A/E861A) embryos died at ~E13.5 (embryonic day 13.5), with activated interferon and double-stranded RNA (dsRNA)-sensing pathways. Genome-wide analysis of the in vivo substrates of ADAR1 identified clustered hyperediting within long dsRNA stem loops within 3' untranslated regions of endogenous transcripts. Finally, embryonic death and phenotypes of Adar1(E861A/E861A) were rescued by concurrent deletion of the cytosolic sensor of dsRNA, MDA5. A-to-I editing of endogenous dsRNA is the essential function of ADAR1, preventing the activation of the cytosolic dsRNA response by endogenous transcripts

    Overexpression of ADAR

    No full text

    Comment on "Widespread RNA and DNA Sequence Differences in the Human Transcriptome"

    No full text

    Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis

    No full text
    Adenosine deaminases that act on RNA (ADARs) convert adenosine residues to inosine in doublestranded RNA. In vivo, ADAR1 is essential for the maintenance of hematopoietic stem/progenitors. Whether other hematopoietic cell types also require ADAR1 has not been assessed. Using erythroid- and myeloid-restricted deletion of Adar1, we demonstrate that ADAR1 is dispensable for myelopoiesis but is essential for normal erythropoiesis. Adar1-deficient erythroid cells display a profound activation of innate immune signaling and high levels of cell death. No changes in microRNAlevels were found inADAR1-deficient erythroid cells. Using an editing-deficient allele, we demonstrate thatRNA editing is the essential function ofADAR1 during erythropoiesis.Mapping of adenosine-to-inosine editing in purified erythroid cells identified clusters of hyperedited adenosines located in long 3’-untranslated regions of erythroid-specific transcripts and these are ADAR1-specific editing events. ADAR1-mediated RNA editing is essential for normal erythropoiesis
    • …
    corecore