40 research outputs found

    Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    Get PDF
    Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP) and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine)2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS), ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure

    Evolución del diseño de interiores en los grandes Centros Comerciales de Lima Central Sur en las últimas tres décadas

    Get PDF
    La investigación responde a una problemática que se evidencia a través de una serie de debilidades que repercuten en el diseño de dichos centros comerciales. El conocimiento de nuevas tecnologías para el diseño interior era escaso, no había conocimientos de enchapes, acabados finos, iluminación decorativa y diseño interior en general. Los materiales tampoco eran de gran ayuda, solo se conocían las estructuras comunes, como el cemento y el acero. Tampoco había conocimientos sobre técnicas constructivas

    Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    No full text
    Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP) and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine)2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS), ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure

    Encyclopedia of Sensors

    No full text
    corecore