19 research outputs found

    Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma

    Get PDF
    The molecular basis for the inverse relationship between differentiation and tumorigenesis is unknown. The function of runx2, a master regulator of osteoblast differentiation belonging to the runt family of tumor suppressor genes, is consistently disrupted in osteosarcoma cell lines. Ectopic expression of runx2 induces p27KIP1, thereby inhibiting the activity of S-phase cyclin complexes and leading to the dephosphorylation of the retinoblastoma tumor suppressor protein (pRb) and a G1 cell cycle arrest. Runx2 physically interacts with the hypophosphorylated form of pRb, a known coactivator of runx2, thereby completing a feed-forward loop in which progressive cell cycle exit promotes increased expression of the osteoblast phenotype. Loss of p27KIP1 perturbs transient and terminal cell cycle exit in osteoblasts. Consistent with the incompatibility of malignant transformation and permanent cell cycle exit, loss of p27KIP1 expression correlates with dedifferentiation in high-grade human osteosarcomas. Physiologic coupling of osteoblast differentiation to cell cycle withdrawal is mediated through runx2 and p27KIP1, and these processes are disrupted in osteosarcoma

    Introduction

    No full text

    A Role for the Cyclin Box in the Ubiquitin-Mediated Degradation of Cyclin G1

    No full text

    White matter and reaction time: Reply to commentaries

    No full text
    We appreciate the many comments we received on our discussion paper and believe that they reflect a recognition of the importance of this topic worldwide. We point out in this reply that there appears to be a confusion between the role of oscillations in creating white matter and other functions of oscillations in communicating between neural areas during task performance or at rest. We also discuss some mechanisms other than the enhancement of white matter that must influence reaction time. We recognize the limited understanding we have of transfer and outline some future directions designed to improve our understanding of this process

    How changes in white matter might underlie improved reaction time due to practice

    No full text
    Why does training on a task reduce the reaction time for performing it? New research points to changes in white matter pathways as one likely mechanism. These pathways connect remote brain areas involved in performing the task. Genetic variations may be involved in individual differences in the extent of this improvement. If white matter change is involved in improved reaction time with training, it may point the way toward understanding where and how generalization occurs. We examine the hypothesis that brain pathways shared by different tasks may result in improved performance of cognitive tasks remote from the training
    corecore