36 research outputs found

    Theophylline as a precision therapy in a young girl with PIK3R1 immunodeficiency

    Get PDF
    Based on its phosphatidylinositol 3-kinase-delta (PI3Kd) inhibitory properties, theophylline was administered to a young girl with activated PI3Kd syndrome (APDS). We report reduced frequency of infections, decreased lymphoproliferation, and noticeable changes in immunophenotype, encouraging further trials with theophylline in children with APDS

    Pulmonary arterial hypertension in interferonophaties: a case report and a review of the literature

    Get PDF
    Background: Pulmonary arterial hypertension consists in an increase of mean pulmonary arterial pressure (PAPm 65 25 mmHg), and may lead to right ventricular failure. Pulmonary arterial hypertension can arise in several disorders, encompassing inflammatory conditions and connective tissue diseases. The occurrence of pulmonary arterial hypertension has recently been reported in monogenic interferonopathies and in systemic lupus erythematosus, highlighting the pathogenic role of type I interferons and paving the way to therapies aimed at inhibiting interferon signaling. Case: We describe a 17-year-old boy with DNase II deficiency, presenting a clinical picture with significant overlap with systemic lupus erythematosus. During treatment with the Janus kinase inhibitor ruxolitinib, he developed pulmonary arterial hypertension, raising the question whether it could represent a sign of insufficient disease control or a drug-related adverse event. The disease even worsened after drug withdrawal, but rapidly improved after starting the drug again at higher dosage. Summary and conclusion: Pulmonary arterial hypertension can complicate type I interferonopathies. We propose that ruxolitinib was beneficial in this case, but the wider role of Janus kinase inhibitors for the treatment of pulmonary arterial hypertension is not clear. For this reason, a strict cardiologic evaluation must be part of the standard care of subjects with interferonopathies, especially when Janus kinase inhibitors are prescribed

    From Bone Marrow Transplantation to Cellular Therapies: Possible therapeutic strategies in managing autoimmune disorders.

    No full text
    Chronic inflammatory disorders occurring in childhood represent a serious therapeutic challenge. However, available therapies seem not to be targeted on the pathogenic mechanism of the disease and are often not actively affecting the natural history of the disease. Emerging treatments might be of some benefit to many patients who did not respond to conventional therapeutic options. Biological therapies with monoclonal antibodies and other recombinant proteins have been introduced in clinical practice. At the same time, mesenchymal stromal cells (MSC) have gained attention as a savage treatment in patients subjected to hematopoietic stem cell transplantation who develop severe graft versus host disease (GvHD); in addition, recent reports from clinical trials on larger cohorts of patients support their use as second-line treatment after failure of corticosteroid treatment. For analogy, they have been proposed for the treatment of intractable autoimmune disorders. Hematopoietic stem cell transplantation (HSCT) has been shown to be effective for treatment of rheumatic disorder cases that were resistant to traditional therapies especially if combined with cell manipulation techniques, such as selection of regulatory T cell and depletion of harmful lymphocytes. We herein present the rationale of different strategies, the preliminary data obtained in clinical trials, unsolved problems and possible next developments of novel treatment protocols of autoimmune disorders

    Defect in mevalonate pathway induces pyroptosis in Raw 264.7 murine monocytes

    No full text
    The inhibition of mevalonate pathway by the aminobisphosphonate alendronate (ALD) has been previously associated with an augmented lipopolysaccharide-induced interleukin-1beta (IL-1β) secretion in monocytes, as demonstrated in an auto-inflammatory disease known as mevalonate kinase deficiency (MKD). In this study we investigated the effect of ALD + LPS on monocyte cell line (Raw 264.7) death. ALD strongly augmented LPS-induced programmed cell death (PCD) as well as IL-1β secretion in Raw murine monocytes, whereas necrosis was rather unaffected. ALD + LPS induced caspase-3 activation. Inhibition of IL-1β stimulation partially restored cell viability. These findings suggest that the inhibition of mevalonate pathway, together with a bacterial stimulus, induce a PCD partly sustained by the caspase-3-related apoptosis and partly by caspase-1-associated pyroptosis. The involvement of pyroptosis is a novel hit in our cell model and opens discussions about its role in inflammatory cells with chemical or genetic inhibition of mevalonate pathway

    Geranylgeraniol and Neurological Impairment: Involvement of Apoptosis and Mitochondrial Morphology

    Get PDF
    Deregulation of the cholesterol pathway is an anomaly observed in human diseases, many of which have in common neurological involvement and unknown pathogenesis. In this study we have used Mevalonate Kinase Deficiency (MKD) as a disease-model in order to investigate the link between the deregulation of the mevalonate pathway and the consequent neurodegeneration. The blocking of the mevalonate pathway in a neuronal cell line (Daoy), using statins or mevalonate, induced an increase in the expression of the inflammasome gene (NLRP3) and programmed cell death related to mitochondrial dysfunction. The morphology of the mitochondria changed, clearly showing the damage induced by oxidative stress and the decreased membrane potential associated with the alterations of the mitochondrial function. The co-administration of geranylgeraniol (GGOH) reduced the inflammatory marker and the damage of the mitochondria, maintaining its shape and components. Our data allow us to speculate about the mechanism by which isoprenoids are able to rescue the inflammatory marker in neuronal cells, independently from the block of the mevalonate pathway, and about the fact that cell death is mitochondria-related

    The immunosuppressive effect of Wharton's jelly stromal cells depends on the timing of their licensing and on lymphocyte activation

    No full text
    BACKGROUND: Mesenchymal stromal cells (MSC) have been proven to have potent immunosuppressive action and hence have been proposed for the treatment of severe Graft Versus Host Disease. However, in most models, MSC were added at the same time of lymphocyte stimulation, which is quite different from what occurs in vivo. AIMS: To investigate how the timing of lymphocyte activation and the exposure to activation-related cytokines (licensing) can influence the immunosuppressive action of Wharton's jelly stromal cells (WJSC). METHODS: WJSC, licensed or not with activation-related cytokines, were added lymphocytes the same time or 24 hours after their stimulation with phytohaemoagglutinin. Proliferation of lymphocytes and cytokines production was measured after three days co-culture. RESULTS: Lymphocytes stimulated in the presence of WJSC displayed a dramatic decrease in proliferation and production of cytokines, in spite of normal expression of activation markers. The suppression was weakened when targeted lymphocytes were seperated by a membrane and partially rescued by the addition of exogenous l-tryptophan, suggesting a major role for indoleamine 2,3-dioxigenase with a probable paracrine effect. Licensing of WJSC increased the immunosuppressive effect, in both contact and non-contact settings. The timing of WJSC licensing was crucial for the immunosuppressive action. Lymphocytes pre-stimulated alone for 24 h, and added afterwards to non-licensed WJSC, showed normal or even increased proliferation. On the other hand, their proliferation was strongly inhibited by licensed WJSC. CONCLUSIONS: WJSC have a potent immunosuppressive function best realized with direct contact, and increased by licensing signals before and during lymphocyte stimulation. Our results could contribute to the set up of new WJSC-based therapies for severe autoimmuno disorders

    MitoQ is able to modulate apoptosis and inflammation

    No full text
    Mitoquinone (MitoQ) is a mitochondrial reactive oxygen species scavenger that is characterized by high bioavailability. Prior studies have demonstrated its neuroprotective potential. Indeed, the release of reactive oxygen species due to damage to mitochondrial components plays a pivotal role in the pathogenesis of several neurodegenerative diseases. The present study aimed to examine the impact of the inflammation platform activation on the neuronal cell line (DAOY) treated with specific inflammatory stimuli and whether MitoQ addition can modulate these deregulations. DAOY cells were pre-treated with MitoQ and then stimulated by a blockade of the cholesterol pathway, also called mevalonate pathway, using a statin, mimicking cholesterol deregulation, a common parameter present in some neurodegenerative and autoinflammatory diseases. To verify the role played by MitoQ, we examined the expression of genes involved in the inflammation mechanism and the mitochondrial activity at different time points. In this experimental design, MitoQ showed a protective effect against the blockade of the mevalonate pathway in a short period (12 h) but did not persist for a long time (24 and 48 h). The results obtained highlight the anti-inflammatory properties of MitoQ and open the question about its application as an effective adjuvant for the treatment of the autoinflammatory disease characterized by a cholesterol deregulation pathway that involves mitochondrial homeostasis

    Familial hypogammaglobulinemia with high RTE and na\uefve T lymphocytes

    No full text
    Most of primary immunodeficiencies with hypogammaglobulinemia are associated with reduced memory B cells. T cell development may be interesting as well, but increased recent thymic emigrants are rarely reported in these patients. We report the case of a family (mother and her two sons) diagnosed with common variable immunodeficiency 10 due to a mutation in the NFKB2 gene. Laboratory findings showed that all three patients presented hypogammaglobulinemia, reduced memory B cells and elevated na\uefve T lymphocytes and recent thymic emigrants. This feature, in the absence of glucocorticoid deficiency, may suggest a primary thymic dysfunction. Interestingly, the mother presented the worst immune phenotype, as regards both antibody production and NK function, indicating that immune function may deteriorate in the course of time. We conclude that close monitoring of immune functions may widen the knowledge on the CVID10 and improve the patients\u2019 care
    corecore