10 research outputs found

    Characterisation of Mucosal Associated Invariant T cells function and metabolism in health and obesity

    Get PDF
    Obesity has developed into a worldwide pandemic, affecting individuals regardless of their socio-economic status, gender or age. It is associated with development of multiple co-morbidities including type 2 diabetes mellitus, which have been shown to be underpinned by inflammation. Indeed, excessive adiposity has been shown to be associated with a large dysregulation of immune cell function, including altered phenotype of mucosal-associated invariant T (MAIT) cells. MAIT cells from people with obesity were shown to have enhanced IL-17 production, accompanied by impaired IFNγ expression. As of now, very little is known about the control of MAIT cell function, therefore more research is required to understand their biology in order to identify the altered process, which leads to their dysfunction in obesity. Immunometabolism of MAIT cells became the focus of this thesis as previous data indicated it as a key biological process that controls immune cell function. Here we confirmed previously published data, showing that MAIT cells are potent producers of IFNγ and IL-17 cytokines and that MAIT cells can proliferate and expand upon stimulation. In addition, we reported that MAIT cells enhance glycolysis upon activation, which in turn is controlled by the influx of amino acids into the cells via LAT1 amino acid transporters. Glycolytic metabolism was required for successful IFNγ production as well as proliferation and expansion of MAIT cells. People with obesity have impaired IFNγ expression and MAIT cell expansion that was accompanied by impaired glycolytic metabolism. Collectively our data indicates that MAIT cells effector functions are in part controlled by the intrinsic metabolic pathways including the glycolytic metabolism. Defect in glycolysis or glycolysis-associated pathways as observed in obesity, leads to their dysfunction and altered immune cells responses

    Mucosal associated invariant T cells are altered in patients with Hidradenitis Suppurativa and contribute to the inflammatory milieu

    Get PDF
    Mucosal Associated Invariant T cells are a population of “innate” T cells, which express the invariant T cell receptor (TCR) a chain Va7.2-Ja33 and are capable of robust rapid cytokine secretion, producing a milieu of cytokines including IFN-g and IL-17. MAIT cells have been reported in multiple human tissues including the gut, periphery and skin. On-going research has highlighted their involvement in numerous inflammatory diseases ranging from rheumatoid arthritis and obesity to psoriasis. Hidradenitis Suppurativa (H.S) is a chronic inflammatory disease of the hair follicles, resulting in painful lesions of apocrine-bearing skin. Several inflammatory cytokines have been implicated in the pathogenesis of H.S including IL-17. The role of MAIT cells in H.S is currently unknown. In this study we show for the first time, that MAIT cells are altered in the peripheral blood of patients with H.S, with reduced frequencies and an IL-17 cytokine bias. We show that CCL20 expression is elevated in lesions of patients with H.S, and MAIT cells can actively traffic towards lesions via CCL20. We show that MAIT cells can accumulate in the lesionsfrom patients with H.S. when compared to adjacent skin, with an IL-17 bias. We show that elevated IL-17, can be linked to the activation of dermal fibroblasts, promoting the expression of chemotactic signals including CCL20 and CXCL1. Finally, we show that targeting the IL-17A transcription factor RORyt robustly reduces IL-17 production by MAIT cells from patients with H.S. Collectively our data detailsIL-17 producing MAIT cells as a novel player in the pathogenesis of H.S and highlights the potential of RORyt inhibition as a novel therapeutic strategy

    Cytokine-induced natural killer cell training is dependent on cellular metabolism and is defective in obesity

    Get PDF
    Natural killer (NK) cells are a population of innate immune cells that can rapidly kill cancer cells and produce cytokines such as interferon-γ. A key feature of NK cells is their ability to respond without prior sensitization; however, it is now well established that NK cells can possess memory-like features. After activation with cytokines, NK cells demonstrate enhanced effector functions upon restimulation days or weeks later. This demonstrates that NK cells may be trained to be more effective killers and harnessed as more potent cancer immunotherapy agents. We have previously demonstrated that cellular metabolism is essential for NK cell responses, with NK cells upregulating both glycolysis and oxidative phosphorylation upon cytokine stimulation. Limiting NK cell metabolism results in reduced cytotoxicity and cytokine production. We have also demonstrated that defective NK cell responses in obesity are linked to defective cellular metabolism. In the current study, we investigated if cellular metabolism is required during the initial period of NK cell cytokine training and if NK cells from people with obesity (PWO) can be effectively trained. We show that increased flux through glycolysis and oxidative phosphorylation during the initial cytokine activation period is essential for NK cell training, as is the metabolic signaling factor Srebp. We show that NK cells from PWO, which are metabolically defective, display impaired NK cell training, which may have implications for immunotherapy in this particularly vulnerable group

    Obesity Reduces mTORC1 Activity in Mucosal-Associated Invariant T Cells, Driving Defective Metabolic and Functional Responses

    Get PDF
    Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-g production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-g production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore