118 research outputs found
Mesoproterozoic paleogeography: Supercontinent and beyond
A set of global paleogeographic reconstructions for the 1770–1270 Ma time interval is presented here through a compilation of reliable paleomagnetic data (at the 2009 Nordic Paleomagnetic Workshop in Luleå, Sweden) and geological constraints. Although currently available paleomagnetic results do not rule out the possibility of the formation of a supercontinent as early as ca. 1750 Ma, our synthesis suggests that the supercontinent Nuna/Columbia was assembled by at least ca. 1650–1580 Ma through joining at least two stable continental landmasses formed by ca. 1.7 Ga: West Nuna (Laurentia, Baltica and possibly India) and East Nuna (North, West and South Australia, Mawson craton of Antarctica and North China). It is possible, but not convincingly proven, that Siberia and Congo/São Francisco were combined as a third rigid continental entity and collided with Nuna at ca.1500 Ma. Nuna is suggested to have broken up at ca. 1450–1380 Ma. West Nuna, Siberia and possibly Congo/São Francisco were rigidly connected until after 1270 Ma. East Nuna was deformed during the breakup, and North China separated from it. There is currently no strong evidence indicating that Amazonia, West Africa and Kalahari were parts of Nuna
EARLY STAGE OF THE CENTRAL ASIAN OROGENIC BELT BUILDING: EVIDENCES FROM THE SOUTHERN SIBERIAN CRATON
The origin of the Central-Asian Orogenic Belt (CAOB), especially of its northern segment nearby the southern margin of the Siberian craton (SC) is directly related to development and closure of the Paleo-Asian Ocean (PAO). Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB) on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area) to south-east (Baikal area) and further to north-east (Patom area). Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions.The origin of the Central-Asian Orogenic Belt (CAOB), especially of its northern segment nearby the southern margin of the Siberian craton (SC) is directly related to development and closure of the Paleo-Asian Ocean (PAO). Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB) on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area) to south-east (Baikal area) and further to north-east (Patom area). Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions
First Precambrian palaeomagnetic data from the Mawson Craton (East Antarctica) and tectonic implications
A pilot palaeomagnetic study was conducted on the recently dated with in situ SHRIMP U-Pb method at 1134 ± 9 Ma (U-Pb, zircon and baddeleyite) Bunger Hills dykes of the Mawson Craton (East Antarctica). Of the six dykes sampled, three revealed meaningful results providing the first well-dated Mesoproterozoic palaeopole at 40.5°S, 150.1°E (A95 = 20°) for the Mawson Craton. Discordance between this new pole and two roughly coeval poles from Dronning Maud Land and Coats Land (East Antarctica) demonstrates that these two terranes were not rigidly connected to the Mawson Craton ca. 1134 Ma. Comparison between the new pole and that of the broadly coeval Lakeview dolerite from the North Australian Craton supports the putative ~40° late Neoproterozoic relative rotation between the North Australian Craton and the combined South and West Australian cratons. A mean ca. 1134 Ma pole for the Proto-Australia Craton is calculated by combining our new pole and that of the Lakeview dolerite after restoring the 40° intracontinental rotation. A comparison of this mean pole with the roughly coeval Abitibi dykes pole from Laurentia confirms that the SWEAT reconstruction of Australia and Laurentia was not viable for ca. 1134 Ma
Unraveling the New England orocline, east Gondwana accretionary margin
The New England orocline lies within the Eastern Australian segment of the Terra Australis accretionary orogen and developed during the late Paleozoic to early Mesozoic Gondwanide Orogeny (310–230 Ma) that extended along the Pacific margin of the Gondwana supercontinent. The orocline deformed a pre-Permian arc assemblage consisting of a western magmatic arc, an adjoining forearc basin and an eastern subduction complex. The orocline is doubly vergent with the southern and northern segments displaying counter-clockwise and clockwise rotation, respectively, and this has led to contrasting models of formation. We resolve these conflicting models with one that involves buckling of the arc system about a vertical axis during progressive northward translation of the southern segment of the arc system against the northern segment, which is pinned relative to cratonic Gondwana. Paleomagnetic data are consistent with this model and show that an alternative model involving southward motion of the northern segment relative to the southern segment and cratonic Gondwana is not permissible. The timing of the final stage of orocline formation (~270–265 Ma) overlaps with a majorgap in magmatic activity along this segment of the Gondwana margin, suggesting that northward motion and orocline formation were driven by a change from orthogonal to oblique convergence and coupling between the Gondwana and Pacific plates
Studies of post-depositional remanent magnetization and their relevance to the palaeomagnetic record
Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens
The Neoproterozoic global reorganisation that saw the demise of Rodinia and the amalgamation of Gondwana took place during an incredibly dynamic period of Earth evolution. To better understand the palaeogeography of these times, and hence help quantify the interrelations between tectonics and other Earth systems, we here integrate Neoproterozoic palaeomagnetic solutions from the various blocks that made up eastern Gondwana, with the large amount of recent geological data available from the orogenic belts that formed as eastern Gondwana amalgamated. From this study, we have: (1) identified large regions of pre-Neoproterozoic crust within late Neoproterozoic/Cambrian orogenic belts that significantly modify the geometry and number of continental blocks present in the Neoproterozoic world; (2) suggested that one of these blocks, Azania, which consists of Archaean and Palaeoproterozoic crust within the East African Orogen of Madagascar, Somalia, Ethiopia and Arabia, collided with the Congo/Tanzania/Bangweulu Block at ∼650-630 Ma to form the East African Orogeny; (3) postulated that India did not amalgamate with any of the Gondwana blocks until the latest Neoproterozoic/Cambrian forming the Kuunga Orogeny between it and Australia/Mawson and coeval orogenesis between India and the previously amalgamated Congo/Tanzania/Bangweulu-Azania Block (we suggest the name 'Malagasy Orogeny' for this event); and, (4) produced a palaeomagnetically and geologically permissive model for Neoproterozoic palaeogeography between 750 and 530 Ma, from the detritus of Rodinia to an amalgamated Gondwana. © 2005 Elsevier B.V. All rights reserved.Alan S. Collins and Sergei A. Pisarevskyhttp://www.elsevier.com/wps/find/journaldescription.cws_home/503329/description#descriptio
Geochronology, palaeomagnetism and magnetic fabric of metamorphic rocks in the northeast Fraser Belt, Western Australia
The first zircon U-Pb SHRIMP dating on high-grade meta-igneous units in the northernmost parts of the Fraser Belt along the southern margin of the Western Australian Yilgarn Craton, reveal crystallisation ages between 1299 ± 10 and 1250 ± 23 Ma. A small number of older xenocrystic zircons, incorporated in some samples, indicate the presence of Late Paleoproterozoic crust in the region. Zircon that crystallised within a melt accumulated in the neck of a boudinaged mafic unit was dated at 1296 ± 4 Ma, indicating that the emplacement of the igneous protoliths took place syntectonically. The anisotropy of magnetic susceptibility of the granulites indicates minimum axes with a mean inclination of 4° towards 130°, corresponding to a nearly vertical southwest-northeast (50-230°) magnetic foliation. This is very close to the structural trend of the Fraser Belt suggesting that the magnetic fabric was acquired syntectonically, during the collision between the Yilgarn and Gawler Cratons. The paleomagnetic data on the granulites overlap with published poles for various 1.2 Ga units in the Albany Belt and the 1.2 Ga Fraser dykes, possibly suggesting that the remanence was acquired during the second stage of the Fraser tectonism. A younger magnetisation component resembles a pole of uncertain age published for Bremer Bay in the Albany Belt
Assembly and Breakup of Rodinia(Some Results of IGCP Project 440)
The principal results of project 440 'Assembly and Breakup of Rodinia' of the International Geological Correlation Programme (IGCP) are reviewed in this work. A map of that supercontinent compiled using geological and paleomagnetic data describes global paleogeography 900 Ma ago. The assembly of Rodinia, which comprised most of Precambrian continental blocks, lasted ca. 400 m.y. (from 1300 to 900 Ma). Its breakup presumably triggered by mantle superplume took place between 830 and 650 Ma. The correlation between tectonic events in different continental blocks is considered. Some problems concerning the Rodinia reconstruction and history, e.g. the slow growth of juvenile crust and effects of mantle-plume events during the amalgamation period and of glaciations at the breakup time, are discussed. The latter caused changes in the biosphere and climate, whereas post glacial periods stimulated progress in biota evolution
Siberia and Rodinia
An analysis of the Riphean sedimentary successions along the margins of the Siberian craton, together with recent geochronological and palaeomagnetic data from Siberia, require a revision of the hypothesis that Siberia was part of Rodinia. Some previously proposed Laurentia–Siberia reconstructions may be dismissed, whereas other models are permissible with minor modifications and conservative assumptions about recent geochronological data from Siberia. A comparison of Laurentian and Siberian apparent polar wander paths between 1050 and 1000 Ma shows a striking similarity. However, if Siberia was part of Rodinia, it was probably not contiguous with the Laurentian craton. In this scenario, northern and southern (Stanovoy block) margins of Siberia are possible candidates for conjunction with the rest of Rodinia. We propose a new reconstruction of Laurentia and Siberia at ca. 1050–1000 Ma.25 page(s
- …