568 research outputs found

    Follicular thyroid carcinoma: Differences in clinical relevance between minimally invasive and widely invasive tumors

    Get PDF
    Evidence on the biological behavior and clinical courses of minimally invasive and widely invasive follicular thyroid carcinoma (MI-FTC, WI-FTC) is still debatable. The current study was conducted to identify differences between MI and WI tumors and those prognostic parameters influencing late outcome such as local recurrence and survival

    Timing of surgery following SARS-CoV-2 infection: an international prospective cohort study

    Get PDF
    Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≄ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≄ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≄ 7 weeks from diagnosis may benefit from further delay

    An in-line coaxial-to-waveguide transition for q-band single-feed-per-beam antenna systems

    Get PDF
    An in-line transition between a coaxial cable and rectangular waveguide operating in Q-band (33–50 GHz) is presented. The aim of the work is to minimize the modifications in the waveguide to the strictly necessary to overcome the manufacturing issues due to the high frequencies involved. In addition, the transition is compact and it does not increase the space occupation on the transverse section, this suggests its application in horn antennas clusters arrangement. The operating principle consists of both a modal conversion and an impedance matching between the devices. The modal conversion is realized in an intermediate region, where the coaxial penetrates in the waveguide: the device geometry is designed so that the electric field in the transition is a trade-off between the TEM mode of the coaxial and the TE10 of the guide. A shaped waveguide backshort and a reactive air gap in the coaxial cable co-participate to achieve the matching. An optimized Chebyshev stepped transformer completes the transition to fulfil the impedance mismatch with the full waveguide. The design issues and technological aspects are considered. The influences of the feeding pin misalignment, the presence of groove is included in the analysis and these practical aspects are discussed and numerically validated via the scattering parameters analysis of the proposed design. The return loss is higher than 25 dB over the whole Q-band

    Designing a High-Power Sodium-Ion Battery by in Situ Metal Plating

    Get PDF
    Sodium ion batteries represent a drop-in technology and a more sustainable alternative to Li-ion, but higher energies and power levels are required to meet the demands required by a greener electrification. Here, the design of an anode-free sodium-ion battery is presented and its performances discussed in terms of reduced mass and high power capabilities. The cell consists of an Iron Hexacyanoferrate - reduced Graphene Oxide composite as cathode material whose synthesis is tailored to achieve minimal structural defects (3%) and water content. Its high-potential redox couple FeLS(C) is stabilized at high rates, granting the full cell with high discharge voltage and power. As negative substrate, a carbon coated aluminum foil was adopted for in situ plating/stripping of Na metal, showing very small voltage hysteresis up to an applied current of 2 mA/cm2. Overall, this simplified full cell architecture can deliver up to 340 Wh/kg and 500 W/kg at nominal 1C retaining 80% in 250 cycles, with the possibility of delivering 9000 W/kg at 20C. Bridging the boundaries between batteries and supercapacitors, this research aims to expand the range of possible applications for Na-ion technology

    WSN hardware for automotive applications: Preliminary results for the case of public transportation

    Get PDF
    The ubiquitous nature and great potential of Wireless Sensors Network has not yet been fully exploited in automotive applications. This work deals with the choice of the cost-effective hardware required to face the challenges and issues proposed by the new trend in the development of intelligent transportation systems. With this aim, a preliminary WSN architecture is proposed. Several commercially available open-source platforms are compared and the Raspberry Pi stood out as a suitable and viable solution. The sensing layer is designed with two goals. Firstly, accelerometric, temperature, and relative humidity sensors were integrated on a dedicated PCB to test if mechanical or environmental stresses during bus rides could be harmful to the device or to its performances. The physical quantities are monitored automatically to alert the driver, thus improving the quality of service. Then, the rationale and functioning of the management and service layer is presented. The proposed cost-effective WSN node was employed and tested to transmit messages and videos, while investigating if any quantitative relationship exists between these operations and the environmental and operative conditions experienced by the hardware

    A wireless sensors network for monitoring the Carasau bread manufacturing process

    Get PDF
    This work copes with the design and implementation of a wireless sensors network architecture to automatically and continuously monitor, for the first time, the manufacturing process of Sardinian Carasau bread. The case of a traditional bakery company facing the challenge of the Food-Industry 4.0 competitiveness is investigated. The process was analyzed to identify the most relevant variables to be monitored during the product manufacturing. Then, a heterogeneous, multi-tier wireless sensors network was designed and realized to allow the real-time control and the data collection during the critical steps of dough production, sheeting, cutting and leavening. Commercial on-the-shelf and cost-effective integrated electronics were employed, making the proposed approach of interest for many practical cases. Finally, a user-friendly interface was provided to enhance the understanding, control and to favor the process monitoring. With the wireless senors network (WSN) we designed, it is possible to monitor environmental parameters (temperature, relative humidity, gas concentrations); cinematic quantities of the belts; and, through a dedicated image processing system, the morphological characteristics of the bread before the baking. The functioning of the WSN was demonstrated and a statistical analysis was performed on the variables monitored during different seasons

    Translation, cross-cultural adaptation, and validation of the Italian version of the anterior cruciate ligament–return to sport after injury (ACL-RSI) scale and its integration into the K-STARTS test

    Get PDF
    Background: The timing of a return to sport (RTS) after anterior cruciate ligament reconstruction (ACLR) represents a major subject of debate in sports medicine practice. Recently, the Knee Santy Athletic Return to Sport (K‐STARTS) composite test was validated. This consists of a battery of physical tests and a psychological evaluation using the anterior cruciate ligament–return to sport after injury scale (ACL‐RSI). This study aimed to translate the ACL‐RSI and K‐STARTS from English to Italian and determine the scale’s reliability and validity in an Italian context. Methods: The translation and cultural adaptation process was performed according to the guidelines for the cross‐ cultural adaptation of self‐report measures. The patients were asked to fill an anonymized online form created for this purpose that included the KOOS, the Lysholm, the IKDC‐SKF, and the Italian translation of the ACL‐RSI (ACL‐RSI‐It). After 1 week, the attendees were asked to repeat the ACL‐RSI‐It to investigate the test–retest reliability. Results: The final study population comprised 115 patients who underwent ACLR, with a mean follow‐up of 37.37 ± 26.56 months. The ACL‐RSI‐It showed axcellent internal consistency (Cronbach’s α = 0.963), reliability (test– retest ICC = 0.966), and good construct validity (positive correlations with the other scales were above 75%). Conclusions: The ACL‐RSI‐It is valid, reliable, and comparable to the original English version of the questionnaire for Italian‐speaking patients. It can be used to assess the psychological readiness of patients for a RTS after primary and unilateral ACLR, and can be integrated into the Italian K‐STARTS test

    Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    Get PDF
    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently-commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1 deg x 1 deg centered on the radio source 3C 129. We modeled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster center. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of t_syn = 267 +/- 26 Myrs. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M=v_gal/c_s=1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70% in the faintest region of the source where the magnetic field is aligned with the direction of the tail.Comment: 19 pages, 17 figures, accepted for publication in MNRA

    Cost–utility analysis of pharmacogenetic testing based on CYP2C19 or CYP2D6 in major depressive disorder: assessing the drivers of different cost-effectiveness levels from an Italian societal perspective

    Get PDF
    Background and Objectives Major depressive disorder (MDD) is a common and severe psychiatric disorder that has enor- mous economical and societal costs. As pharmacogenetics is one of the key tools of precision psychiatry, we analyze the cost–utility of test screening of CYP2C19 and CYP2D6 for patients suffering from major depressive disorder (MDD) and try to understand the main drivers that influence the cost–utility. Methods We developed two pharmacoeconomic nonhomogeneous Markov models to test the cost–utility, from an Ital- ian societal perspective, of pharmacogenetic testing genetic to characterize the metabolizing profiles of cytochrome P450 (CYP) 2C19 and CYP2D6 in a hypothetical case study of patients suffering from major depressive disorder (MDD). The model considers different scenarios of adjustment of antidepressant treatment according to the patient’s metabolizing profile or treatment over a period of 18 weeks. The uncertainty of model parameters is tested through both a probabilistic sensitivity analysis and a one-way deterministic sensitivity analysis, and these results are used in a post-hoc analysis to understand the main drivers of three alternative cost-effectiveness levels (“poor,” “standard,” and “high”). These drivers are first evaluated from an exploratory multidimensional perspective and next from a predictive perspective as the probability that a patient belongs to a specific cost-effectiveness level is estimated on the basis of a restricted set of parameters used in the original pharmacoeconomic model. Results The models for CYP2C19 and CYP2D6 indicate that screening has an incremental cost-effectiveness ratio of 60,000€ and 47,000€ per quality-adjusted life year (QALY), respectively. The probabilistic sensitivity analysis shows that the treat- ments are cost-effective for a 75,000€ willingness to pay (WTP) threshold in 58% and 63% of the Monte Carlo replications, respectively. The post-hoc analysis highlights the factors that allow us to clearly discriminates poor cost-effectiveness from high cost-effectiveness scenarios and demonstrates that it is possible to predict with reasonable accuracy the cost-effectiveness of a genetic test and the associated therapeutic pattern. Conclusions Our findings suggest that screenings for both CYP2C19 and CYP2D6 enzymes for patients with MDD are cost-effective for a WTP threshold of 75,000€ per QALY, and provide relevant suggestions about the most important aspects to be further explored in clinical studies aimed at addressing the cost-effectiveness of genetic testing for patients diagnosed with MDD

    Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders

    Get PDF
    Neuroinflammation represents a common trait in the pathology and progression of the major psychiatric and neurodegenerative disorders. Neuropsychiatric disorders have emerged as a global crisis, affecting 1 in 4 people, while neurological disorders are the second leading cause of death in the elderly population worldwide (WHO, 2001; GBD 2016 Neurology Collaborators, 2019). However, there remains an immense deficit in availability of effective drug treatments for most neurological disorders. In fact, for disorders such as depression, placebos and behavioral therapies have equal effectiveness as antidepressants. For neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease, drugs that can prevent, slow, or cure the disease have yet to be found. Several non-traditional avenues of drug target identification have emerged with ongoing neurological disease research to meet the need for novel and efficacious treatments. Of these novel avenues is that of neuroinflammation, which has been found to be involved in the progression and pathology of many of the leading neurological disorders. Neuroinflammation is characterized by glial inflammatory factors in certain stages of neurological disorders. Although the meta-analyses have provided evidence of genetic/proteomic upregulation of inflammatory factors in certain stages of neurological disorders. Although the mechanisms underpinning the connections between neuroinflammation and neurological disorders are unclear, and meta-analysis results have shown high sensitivity to factors such as disorder severity and sample type, there is significant evidence of neuroinflammation associations across neurological disorders. In this review, we summarize the role of neuroinflammation in psychiatric disorders such as major depressive disorder, generalized anxiety disorder, post-traumatic stress disorder, and bipolar disorder, as well as in neurodegenerative disorders, such as Parkinson’s disease and Alzheimer’s disease, and introduce current research on the potential of immunomodulatory imide drugs (IMiDs) as a new treatment strategy for these disorders
    • 

    corecore