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Abstract: An in-line transition between a coaxial cable and rectangular waveguide operating in
Q-band (33–50 GHz) is presented. The aim of the work is to minimize the modifications in the
waveguide to the strictly necessary to overcome the manufacturing issues due to the high frequencies
involved. In addition, the transition is compact and it does not increase the space occupation on
the transverse section, this suggests its application in horn antennas clusters arrangement. The
operating principle consists of both a modal conversion and an impedance matching between the
devices. The modal conversion is realized in an intermediate region, where the coaxial penetrates
in the waveguide: the device geometry is designed so that the electric field in the transition is a
trade-off between the TEM mode of the coaxial and the TE10 of the guide. A shaped waveguide
backshort and a reactive air gap in the coaxial cable co-participate to achieve the matching. An
optimized Chebyshev stepped transformer completes the transition to fulfil the impedance mismatch
with the full waveguide. The design issues and technological aspects are considered. The influences
of the feeding pin misalignment, the presence of groove is included in the analysis and these
practical aspects are discussed and numerically validated via the scattering parameters analysis of
the proposed design. The return loss is higher than 25 dB over the whole Q-band.

Keywords: transition; waveguide; coaxial; impedance matching; end-laucher; ridge

1. Introduction

High frequency systems require transmission devices with low losses and disper-
sion [1]. Moreover, the performance of microwave (300 MHz–30 GHz) and millimetre-wave
(30–300 GHz) devices as antennas [2] or waveguides [3] strongly depends on geometrical
parameters whose dimensions are smaller than the operative wavelength [4], so that as
the variation scale of the electromagnetic waves involved decreases (e.g., at the frequency
of 50 GHz, the free space wavelength is about 6 mm), thus calling for a higher precision
and tight mechanical tolerances in the fabrication, to avoid long and complicated post-
realization tuning procedures [1]. A higher precision is required in their fabrication. In this
framework, microwave engineers tend to prefer devices whose geometry allows an easier
manufacturing process when the operating frequency rises [1]. These issues make horn
antennas the preferred solution in high frequency transmission systems with respect to
planar or wire antennas: horn antennas are generally all metallic and are characterized by a
simple geometry, easy construction and excitation [5]. Such features make the horn one of
the typical feeds at millimeter-wave (mm-wave) frequency range, as a stand-alone antenna,
array element [6] or as feed for a reflector system [7]. At mm-wave, the channel is charac-
terized by a high signal attenuation which limits the long distance transmission capability
of a stand alone antenna and requires the applications of large reflector dishes to obtain an
high directivity [8]. Since a high-directive radiation limits the beamwidth [9], the need to
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guarantee the communication over a wide angular range requires a multiple narrow-beam
radiation, which translates in a single-feed-per-beam (SFB) antenna configuration [10].

Satellite communications exploit multiple-beam reflector antennas (or, in particular
cases, phased arrays [11]) to achieve a continuous coverage over a desired field-of-view
on terrestrial surface [10]. Since a different feed is required per each beam, the need to
cover all the directions in a determinate angular range is satisfied with a dense cluster
of horns [12,13]. A similar multiple horn-fed reflector antenna system is employed in
radio-astronomy too [14], where the low power of the typical signals involved requires a
large parabolic dish to collect the incoming radiation and focus it in a feed.The feed has a
composite geometry, and a certain numbers of horn antennas are placed close each other in
the focal point, providing a multi-beam radiation where the beams system covers a wide
span of the sky [15]. Since not the whole radio frequency (RF) system in charge of the signal
processing consists of waveguide (WG) components, a suitable transition is required to
connect the horn to the RF front-end without degrading the signal. The traditional E-probe
transition requires the orthogonal alignment of the second device with respect to the axis
of the horn [16], this increases employment in the transversal area and limits the possibility
of creating a cluster with a dense concentration of horn feeds, especially in the mm-wave
range. In addition, the relative position between the reflector and the horn-feed is a design
parameter which can be limited by the E-probe feed configuration. To overcome such
limitations, the TE10 mode of the horn waveguide can be coupled to the field configuration
in the downstream devices through an in-line transition which keeps the same direction of
the field and does not increase the transversal size and does not concur to the blockage
effect [10]. Microstrip and coaxial cable can be employed for such a purpose, and different
solution have been studied, by shaping the end-launcher [17] and studying configurations
which ease the connection between the devices [18], or involving gap-waveguides to
improve the matching [19]. However, usually high-performance systems have coaxial
connections [14]. For this reason, coaxial-to-waveguide in-line transition is a common
solution to feed horn antennas employed in reflectors.

The in-line coaxial-to-waveguide transition has been proposed since the 1960s [20]
and it has been employed to feed open-waveguide arrays [21]. The L-shaped coaxial
configurations [22,23] are a first common technique to short the launcher, but a folded
conductor is a challenging task, especially in mm-wave technology, and it is overcome by
patch antenna launchers [24] or by shorting the launcher directly on a tapered ridge or
multi-section one quarter wavelength-length transformer ridges, which allow the matching
over a wide bandwidth [25,26]. Despite the aforementioned complexity, the L-shaped
solution has been widely used for horn antennas, even leading to patented devices, such
as [27]. The bandwidth enlargement has been studied and it has been accomplished with
different strategies, as a thicker pin (compared to the inner coaxial conductor) surrounded
by a shaped cavity [28], or by widening both the width and the height of the waveguide [29].
Dielectric [30] or metallic [31] shaped fins have been shown to be an alternative to provide
the desired matching. In [32], the matching is achieved over a wideband via an intermediate
rectangular coaxial structure attached to a single ridge waveguide. These solutions presents
relevant drawbacks, in particular the cumbersomeness of the technological strategy to meet
the required transmission performances and modal conversion.

This paper proposes an in-line coaxial-to-waveguide transition with a compact ge-
ometry to obtain a good match over the whole Q-band (33–50 GHz). The aim is to reach
the desired matching (typically, at least a return loss (RL) > 20 dB in radioastronomy)
without increasing the transverse occupation and limiting the additional components to
the strictly necessary, in order to obtain a satisfactory accuracy in the design despite the
small operating wavelengths involved. This is an alternative solution to the previous work
which involved a microstrip as end-launcher [33]. The shift between a microstrip and a
coaxial end-launcher leads to several improvements. First of all, microstrip impedance
and propagation constant are dispersive. To this aim, the design and the analysis are
carried out by performing numerical experiments which take into account a number of
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potentially limiting technological scenarios. This dispersion is due both to a dispersivity of
the dielectric constant and to the geometric dispersion of the microstrip [34]. The latter can
be well modelled but only for “free space” microstrip, not in configurations as in [33]. On
the other hand, the coaxial conductors have no geometrical dispersion, and the dielectric
material dispersion is typically smaller than the dispersion of a microstrip slab [35]. As a
consequence, the required bandwidth (33–50 GHz) can be more easily achieved. Moreover,
the unavoidable inaccuracy in the knowledge of the permittivity of a microstrip dieletric
slab in the Q band reduces the overall accuracy of the matching and, as a consequence,
of the performance [36]. This makes the coaxial cable the preferable choice in the radio
astronomical receivers [14]. Finally, the field at the microstrip edges is rather large, and
this increases the dielectric losses, which become the main loss source of the complete
transition. The waveguide is a WR-22 (a × b = 5.69 × 2.845 mm), whereas the coaxial cable
is filled with Teflon (εr = 2.1, tan δ = 0.001, radius rd = 0.3386 mm) and ends in a pin with
the same radius of the inner conductor ri = 0.1136 mm. The transition has to accomplish
both a mode fitting and an impedance matching between the waveguide and launcher.

The in-line configuration keeps the same direction of propagation in both the compo-
nents, so that the E-fields of the TEM mode in the coaxial cable and of the TE10 mode of the
waveguide are parallel. In addition, the high wave impedance of the hollow waveguide
must be matched to the 50 Ω of the end launcher. Hence, the waveguide traversal geometry
in proximity of the transition needs to be modified in order to both reduce its impedance
and match its field distribution with the end launcher [28]. Then, the transition is matched
to the full WR-22 through a stepped impedance transformer. The performance has been
analyzed in terms of return and insertion loss.

2. Design

The high frequencies involved, up to 50 GHz, which correspond to a guided wave-
length of 7.1 mm [37], strongly limit the degrees of freedom in the design. Since the
precision required in microwave components is related to the operative wavelength, and
usually it is smaller than an order of magnitude respect with the latter, transitions which
match the coaxial cable using small metallic parts, such as folded pins [21,23], fins [30]
or metallic bricks suspended with respect to the metallic walls as rectax [26] are rather
demanding in realization accuracy when the operating frequency rises. Additionally, mod-
ification in the pin radius [28] or in its shape [32] is critical in Q-band due to the reduced
physical dimensions. None of the mentioned solutions is proposed in the literature for
operating frequencies up to 50 GHz. In the same time, it is important to reduce the number
of design parameters, so it has been chosen not to modify the WG transverse section [29]
and use a single ridge cascade.

The purpose of this work is to obtain a wideband transition without increasing the
WG transverse occupation and with an as simple as possible geometry with respect to the
solutions proposed in literature: no intermediate steps (except for a multistep impedance
transformer) [29] or shaped pins [23,28] have been introduced in the design, and the
waveguide transverse section has been modified only in the backshort, in the section where
the launcher is inserted.

The geometry of the proposed transition is shown in Figure 1, where the left and the
upper walls are removed for the sake of a clearer internal geometry display. The coaxial
cable is inserted in the WG backshort of (a × b) size, where a circular hole with the same
radius of the dielectric coaxial layer is realized, in central position with respect to the WG
long side a. The pin is shorted to a ridge, this in turn is connected to a cascade of ridged
waveguide steps which implement a Chebyshev stepped impedance transformer, in charge
of achieving the impedance matching with the full WG [38].
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Figure 1. Geometry of the coaxial-to-waveguide transition: isometric view (the left and the upper
walls are not displayed). The coaxial probe (displayed in orange) is inserted at the center of the
waveguide (WG) backshort: the coaxial dielectric layer terminates in correspondence of the WG
backshort face, whereas the inner conductor is shorted on the ridge. The resulting ridge WG structure
is then matched to the hollow waveguide via a ridged steps cascade.

In order to achieve the modal conversion, only the coaxial inner conductor (pin) enters
inside the guide, whereas the WG outer walls act as the coaxial outer conductor, so that
the field configuration in this waveguide step is similar to a TEM. As a by product of this
choice, no dielectric parts are needed in the mode converter as it would be required by
using a microstrip end-launcher, and this significantly increases the achievable accuracy.
In addition, such a field must be matched to a full WG. The introduction of a ridge for the
pin short eases in the same time the modal conversion. As a matter of fact, by introducing
an offset in the pin position along the short side b with respect to the center (Figure 2),
and so approaching it to the WG upper wall, a large field is concentrated in the small gap
g between the two aforementioned conductors. Such a field configuration is similar to a
single-ridged waveguide (R-WG) whose ridge is centered in the long side with an height
equal to the offset of the pin [33]. Moreover, the field lines in the pin section gather in the
gap between the pin and the upper wall, and they are oriented parallel to the lines in the
ridged area. Figure 3 shows the transverse field configuration in correspondence of the
pin (a) and of the first ridge (b) in the waveguide: both cases concentrate the energy in the
center of the wide side, whereas it is weak in the rest of the transverse section. In addition,
the ridge reduces the WG impedance, making it comparable to the coaxial cable one [39].
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Figure 2. Geometry of the coaxial-to-waveguide transition: sectional lateral view. The pin lp long is
shorted on a ridge hr high and lr long (in dark grey). The unridged WG step has a reduced height
b1, and a matching cavity of dimensions (hm × lm) is added along the backshort to improve the
matching. The coaxial step highlighted in green indicates the lg long air gap inserted at a distance ld
from the transition.

(a) (b)
Figure 3. Field distribution in the mode transformation (in magnitude) at two different transverse
sections. The white areas are metal filled. With reference to the Figure 2: (a) Electric field of the TEM
mode on the cross-section at center of the lp long step where the coaxial pin penetrates in the WG;
(b) Electric field of the TE10 mode on the cross-section at the center of lr long ridged WG step.

Nevertheless, to improve the matching over a wide band, modifications in the back-
short of the WG and in the coaxial are needed. Several strategies can be used to achieve this
aim, as modifying the WG height b in the lp step or the insertion of reactive components.
In this work, as shown in Figure 2, the vertical side of the backshort is shortened from
b to b1 in order to decrease the wave impedance to match it with the end-launcher and
the ridged step, and a sort of rectangular cavity with the same width of the WG and
respectively lm, hm in depth and height is added. Such a cavity acts as a tuning stub
whose reactive behaviour improves the impedance matching in the transition. Moreover,
a reactance-series is introduced in the coaxial cable to further compensate the input reac-
tance, realized through a discontinuity in the dielectric insulator. The Teflon is removed at
ld distance from the transition to create a capacitance which balances the reactive parasitic
effects inside the waveguide (highlighted in green in Figure 2). Such modifications do not
increase the transverse section of the transition, maintaining the aim of a compact structure.

Finally, the ridged WG must be matched with the hollow WR-22 over the whole
required bandwidth. This is realized through a multi-stepped Chebyshev impedance
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transformer based on ridges of progressive descending height. The bandwidth required
for the impedance matching is connected with the number of steps in the transformer [40].

Because of the complexity of the geometry, there is not a precise guideline for the
sizing of the whole transition, and an analytical model is not trivial to be defined due
to the number of parameters involved. Early, the first ridge size is defined in order to
suitably fit the coaxial impedance and the electric field distribution and in the same time
not to complicate the manufacturing issue (e.g., a too short ridge can make the pin shorting
challenging). After this, the backshort and the air gap in the end-launcher are sized together
to obtain the desired matching: the first reduce the impedance in the first WG step, where
the presence of the coaxial pin avoids the adoption of a ridge, whereas the gap balances the
reactive component of the WG input impedance. The lp long section is the main part where
the modal conversion applies [28]: it consists on a TEM structure with a rectangular outer
conductor and a circular inner conductor, the coaxial pin, where the impedance is reduced
by resizing the WG height b1, and shaping the backshort with the cavity, rather than
shaping and acting on the cylindrical pin radius, which is a more complicated technological
solution, as done in [28]. In the same time, as aforementioned, the field in such a modal
conversion step is concentrated the gap between the coaxial pin and the upper wall, by
simulating the modal distribution in the downstream R-WG. With reference to Figure 2, the
pin is lp = 0.4 mm long and g = 0.205 mm distant from the upper wall of the WG. The ridge
where the pin is shorted keeps the same hollow space above, so it results hr = 2.64 mm
high, lr = 1.2 mm long and w = 1.1 mm wide. The hollow step inside the coaxial cable
is lg = 0.52 mm long and it is placed ld = 1.2 mm distant from the pin. The Smith Chart
in Figure 4 shows the effect of the air gap insertion. The backshort height is reduced to
b1 = 2.56 mm in the step where the pin enters inside the WG, and a cavity hm = 1.28 mm
high and lm = 0.94 mm deep is added behind it.

Figure 4. Effect of the air gap in the coaxial cable: the return loss with the air gap (blue line) and without (red).

The Chebyshev impedance transformer has been realized in 5 steps, which have
proven to be the best trade-off between the RL performance and the specification of small
transition. All the ridges have the same width of the first (1.1 mm). The requirement of
high RL at such frequencies requires very precise size for the transformer steps, more than
the values that can be obtained by the approximated formula for R-WGs [39]. Moreover,
also the effects of the reactive phenomena due to the discontinuities between each couple
of ridges must be traded by correcting the ridge lengths. To overcome these two issues, the
Chebyshev impedance transformer has been optimized through the PSO algorithm, widely
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used in electromagnetic problems [41,42], in order to determine the lengths and the heights
of the ridges which minimize the RL seen at the highest ridge section. The optimization
procedure is based on the combined operation of MATLAB 2015 and a Finite Element
Method (FEM) 3D electromagnetic solver (Ansys Electronics Desktop 2016.2), respectively
in charge of the optimization algorithm script definition and of the electromagnetic per-
formance evaluation, in order to minimize the overall RL in the required frequency band.
A conceptual scheme of this process is explained in Figure 5. The algorithm considers as
swarm positions the deviation of the R-WG geometrical parameters (in this case, the ridge
heights and lengths) from the theoretical values calculated via the formula available in [39],
then calculates the objective functions (which accounts for a maximum RL over the whole
Q-band) through the FEM solver and iterates till convergence is reached. The working
principle of such an optimization process has been explained in details in [33] and the
optimized values of the ridges’ size (displayed in Figure 6) are reported (in millimeters) in
the Table 1.

Figure 5. Summary of the PSO-based optimization algorithm for the Chebyshev transformer [33].

Figure 6. Ridge cascade structure: side view. The first ridge (of size hr, lr) is the same as in
Figure 2, where the coaxial pin is shorted. The remaining ridges make up the Chebyshev impedance
transformer, whose size hi, li, i = 1, . . . , 5 are optimized via the PSO algorithm.
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Table 1. Geometrical size of the Chebyshev impedance transformer.

Step h [mm] l [mm]

1 2.58 1.81
2 2.37 1.9
3 1.91 1.92
4 1.22 1.9
5 0.55 1.99

3. Results

The transition was designed through a FEM electromagnetic solver, Ansys Electron-
ics Desktop 2016.2. The waveguide and the coaxial outer conductor were modelled in
aluminium, the coaxial inner conductor was modelled in copper. By considering from
the air gap in the coaxial to the smallest ridge in the WR-22, the transition was 13.24 mm
long. It is worth noting that the main part of the transition in terms of space occupation
(9.52 mm) consisted of the Chebyshev impedance transformer, the rest of the matching
network consisted only of the pin and the first ridge where this was shorted and it was
1.6 mm long inside the waveguide, 3.32 mm considering from the air gap in the coaxial
cable to the same ridge (the backshort cavity lays inside this length), which was 0.55 λ0 at
the higher frequency considered (50 GHz).

3.1. Performance

The performance was evaluated in terms of scattering parameters between the trans-
verse section of the coaxial cable upstream the air gap and the transverse section of the
hollow waveguide, far enough from the Chebyshev transformer to avoid issue due to
higher modes in the ridges’ edges.

Figure 7 shows the return loss and the insertion loss. The RL was higher than 25 dB
over the whole Q-band (BW% > 40%), guaranteeing a very good matching between the
horn and the coaxial. However, the most remarkable result was the IL lower than 0.06 dB
over the whole Q-band. This was significantly smaller compared with the microstrip-fed
transitions, where values around 0.25 dB were typical [33], because the latter had a larger
fraction of (lossy) dielectric, and, moreover, the electric field in the dielectric was far larger
than the field of a coaxial cable. These results were also validated by using CST Microwave
Studio, and it resulted in a deviation less than 1 dB in the whole frequency band (this
evaluation is reported in Appendix A).

3.2. Tolerance Analysis

Since, as aforementioned in the introduction, the required accuracy and tight mechan-
ical tolerances is one of the main issues at such frequencies [1], it is relevant to investigate
some of the most critical parts in the design in order to estimate the tolerances in the manu-
facturing process. By performing accurate numerical experiments, as usually done when
designing this type of RF devices, we expect to minimize post-realization tuning procedures
and technological contingencies, while gaining relevant insights into the performance of
the proposed in-line coxial-to-waveguide transition at Q-band.

The main issue is surely the connection between the pin and the waveguide. More
precisely, the vertical offset with respect to the WG center is the most sensitive parameter:
the gap g determines the characteristic impedance of the R-WG step immediately down-
stream the end launcher, so that it is matched to the latter, and in the same time it sets
the impedance to be matched to the full waveguide through the Chebyshev impedance
transformer. Therefore, we have evaluated the transition RL response over an interval of
values of g around the optimal value.

As shown in Figure 8, the RL was better than 20 dB over the whole Q band for a values
range of g equal to 0.195–0.215 mm (about 10% around the design value). In this range the
ridge kept higher than the first Chebyshev transformer ridge (hc1 high), further increase
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in g degraded the performance due to the impedance mismatch between the two ridge
heights hr, hc1. As a matter of fact, by considering only the transition stadiums between
the air gap and the first ridge as in Figure 9 (in the following, the WG step with the hr high
ridge was named WGr), the matching showed a higher tolerance, as displayed in Figure 10.
As reported in the graph, the RL was evaluated by varying g in the range 0.18–0.22 mm,
which was a variation of 20% around 0.2 mm. The RL kept higher than 20 dB in all the
variation range, by assuring a good tolerance for such a parameter and a suitable matching
between the end launcher and the R-WG. It follows that, in the previous test, a significant
contribution to the performance degradation was due to the different impedance value in
the WGr with respect to the theoretical value the Chebyshev transformer was matched to.
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Figure 7. Return loss and insertion loss evaluated in the section between the transverse section of the coaxial cable upstream
the air gap and the transverse section of the hollow waveguide. This section is far enough from the Chebyshev transformer
to avoid issues due to higher modes in the ridges’ edges.
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Figure 9. Section of the device involved in the second gap test: it is evaluated the performance by
considering the device step from S section (upstream the air gap) to S’ (in the WGr step) and by
varying the g parameter, which is related to the position of the pin insertion and to first ridge height.
The RL is evaluated in input to the S section.

Therefore, in order to reduce the performance degradation of the manufactured device,
it is worthwhile to split the design and manufacturing process in two steps (feasible, for
instance, with milling or 3D printing technologies [43]). The first consists in the realization
of the block from the coaxial end launcher to the aforementioned WGr step, once the real
h∗

r value is measured (and, the input impedance in WGr towards the launcher is known),
the ridge-stepped Chebyshev transformer is designed and optimized with respect to h∗

r .
In this way, a partial compensation of the inaccuracies given by unavoidable errors in the
the construction process is obtained.
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Figure 10. Return loss of the transition step shown in Figure 9. The g parameter modifies the impedance in the WGr step
and introduces a mismatch with the coaxial cable which affects the RL.

Another significant matter is the short between the coaxial pin and the ridge. The pro-
posed solution, shown in Figure 11, is to create a groove in the ridge, with a width equal
to the pin diameter, and to short-circuit via the application of a two-component glue (like
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a silver-filled epoxy paste, as EPO-TEK H20E). The significant size of the groove was
small compared to the operative wavelength, so it would not affect the performance in a
relevant way and the ridged step impedance kepteps almost the same. Figure 12 shows
the deviation in the return loss for a 1 mm long groove compared with the base case, and
confirmed a negligible deviation in the performance. However, our refined analysis consid-
ered several possible scenarios where the pin position was not perfectly centred along the
WG but it presented an offset in the H-plane. A wider groove was considered, modelled
as EPO-TEK H20E filled, and several potential errors due to the non perfect alignment
of the end-launcher were considered (the cases are shown in a wide panel displayed in
Figure 13):

1. the original RL presented in Figure 7 (reference case);
2. a simple lateral shift of 0.4 mm (which covered a 0.8 mm range over a 1.1 mm ridge

width) of the groove along the ridge width (Figure 13a,b);
3. a groove (wide twice the pin diameter, equal to the 40% off the ridge width) whose

glue thickness was 20 µm higher than the metallic ridge, with a lateral shift of 0.1 mm
of the pin (the maximum available in the groove) (Figure 13c,d);

4. a groove (wide twice the pin diameter, equal to the 40% off the ridge width) whose
glue thickness was 20 µm higher than the metallic ridge and the direct contact was
missing between the pin and the ridge, with a lateral shift of 0.1 mm of the pin (the
maximum available in the groove) (Figure 13e,f).

The graph in the Figure 14 reports the RLs over this study: all the cases considered
keep the RL higher than 20 dB over the whole Q band, this assured a good tolerance
on the pin shorting to the ridge. It is worth noting, by considering cases 3 and 4, that a
non-direct contact of the pin was well compensated by the silver-filled glue, since the RL
retained a value higher than 20 dB, thus implying that, in this unfortunate manufacturing
error, the glue acted as a conductive pathway from the pin, still ensuring a good signal
integrity. Further analysis showed that a groove width three times the pin diameters (with
the relative pin misalignment) kept the RL over 18 dB over the whole Q-band. In Figure 15
is shown the field distribution on the cross-section at center of the lp long step where the
coaxial pin penetrated in the WG: the misalignment of the pin and the grooved shorting
did not affect the TE10 mode in the WG. Therefore, from our simulations, a relevant insight
and useful feedback to the future manufacturing step was found.

Figure 11. Practical shorting of the pin on the ridge. The coaxial pin (in orange) is inserted in a
groove realized in the first ridge (gray), and pasted via a conductive glue.
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Figure 12. Return loss comparison: the grooved short displayed in Figure 11 (blue line) does not introduce a relevant
variation with respect to the return loss of the initial design shown in Figure 7.

(a) case 2: top view (b) case 2: front view

(c) case 3: top view (d) case 3: front view

(e) case 4: top view (f) case 4: front view

Figure 13. Geometry of the cases tested for the non perfect alignment of the end-launcher (gray) on
the ridge (light gray), displayed in top and frontal view: (a,b) case 2, (c,d) case 3, (e,f) case 4. The
glue which fills the groove is displayed in green.
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Figure 14. Return loss comparison between the tests on the groove and pin incorrect centering.

Figure 15. Field distribution in case 4, on the cross-section where the pinis shorted to the ridge.
The ridge and the pin are displayed in gray, and the EPO-TEK H20E in green. The pin misalignment
and its non-direct contact with the ridge does not affect the TE10 mode.

3.3. Discussion

The transition performance was evaluated in terms of RL and IL over the whole Q-
band, and confirmed the suitability of such an in-line configuration. In the Table 2, a brief
comparison of the similar works which constitute the state of the art is provided, taking
into account both the in-line coaxial-to-waveguide (coax2wg) and the in-line microstrip-
to-waveguide (us2wg) transitions and comparing for all the cases the bandwidth with
RL higher than 20 dB: the proposed transitions with a comparable performance are all
proposed at lower frequency ranges and adopt solutions which are too critical in Q-band, as
a shaped pin [26,28] or a tunable adjustable fin [25]. As explained in the first paragraph of
Section 2, these techniques introduce additional elements in the geometry, which translate
in additional potential errors.
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Table 2. A comparative table on performance of the different transitions proposed in literature.

Work Structure Simulated RL BW%

[17] us2wg 20 dB-BW: 92–100 GHz 8.33
[18] us2wg 20 dB-BW: 8.35–9.6 GHz 7.18
[19] us2wg (gap WG) 20 dB-BW: 77–108 GHz 33.5
[24] coax2wg (patch launcher) 20 dB-BW 10–10.4 GHz 3.9
[25] coax2wg with tunable fin 20 dB-BW: 2.5–4 GHz 46
[26] coax2wg with rectax 20 dB-BW: 3–4.8 GHz 46.15
[28] coax2wg with shaped pin 20 dB-BW 7.5–13 GHz 54

The shorting between the coaxial pin and the ridge has been topic of several tolerance
analysis to evaluate the design robustness respect to this manufacturing issue. The pin
vertical offset has been analysed and shows an acceptable tolerance on the gap value,
around the 20% (Figure 10). Moreover, the proposed solution to short the end-launcher
to the waveguide does not affect the performance (Figure 12), and even if the pin is not
perfectly centred in the ridge the RL keeps high enough (Figure 14) and the transverse field
distribution keeps the TE10 mode shape (Figure 15).

Future works must dealt with the realization anc characterization of the proposed
in-line coaxial-to-waveguide transition at Q-band. Given the thorough tolerance analysis,
the expected range of variation of the most influential geometrical parameters can be
controlled by using milling as manufacturing method. Alternative, more recent and
appealing technologies, such as 3D printing [44] may not be able to satisfy the tight
mechanical tolerances required at these high working frequencies. In particular, selective
laser sintering can achieve a resolution of about 20–60 µm [45]. Furthermore the equipment
can be costly.

4. Conclusions

In this work, an in-line coaxial-to-waveguide transition in Q-band has been proposed.
The transition is 13.24 mm long, and the only increase in space occupation is due to
a tapered backshort where a cavity is inserted. The transverse section size of the full
waveguide is not exceeded. The modifications in the rectangular waveguide are reduced to
the strict necessary to achieve the impedance matching with the coaxial cable and a suitable
modal conversion. The critical design issues are studied through a tolerance analysis,
reported in the result section.

The return loss keeps higher than 25 dB in the whole Q-band (BW% = 40.96), guar-
anteeing a good operation over the all required frequencies, and an acceptable margin to
compensate the unavoidable manufacturing errors. The insertion loss (lower than 0.06 dB)
results sensibly better than in a typical microstrip-based in-line transition, due to the
reduced dispersion in the coaxial end-launcher.

This improvement significantly facilitates the signal detection and processing, increas-
ing the signal power level compared to the noise generated by the devices which constitute
the receiving RF system. The results suggest the suitability of the proposed solution to
develop an in-line transition with low losses by maintaining a very compact geometry and,
in the same time, satisfying the requirements over a wide frequency band. This makes the
proposed in-line coaxial-to-waveguide transition suitable for SFB antennas arrangement in
radio-astronomy and satellite communication.
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Abbreviations

The following abbreviations are used in this manuscript:
BW% Percent Bandwidth
coax2wg Coaxial-to-waveguide
FEM Finite Element Method
FIT Finite Integration Technique
IL Insertion Loss
RF Radio Frequency
RL Return Loss
R-WG Ridged Waveguide
SFB single-feed-per-beam
us2wg Microstrip-to-waveguide
WG Waveguide

Appendix A

A further analysis of the device performance have been carried out by using another
full-wave analysis simulation software, CST Microwave Studio, to compare the results
provided by two different software which use different numerical methods to solve the
electromagnetic problem and to provide another contribute to the result validation. Two
different solvers have been tested in CST, the Time Domain Solver which is based on the
Finite Integration Technique (FIT) to solve the Maxwell equations, and the Frequency
Domain Solver which is based of the Finite Element Method (FEM). The simulation settings
for both the tests are as follows in the Table A1.

Table A1. Simulation settings in CST Microwave Studio.

CST-MS - Time Domain Solver CST-MS - Frequency Domain Solver

Mesh Type: Hexaedral Mesh Type: Tetrahedral

Accuracy: −50 dB

Mesh properties Mesh properties
(a) 40 cell per wavelength (a) Adaptive Mesh refinement

(b) Volume refinement: 6 additional cells around box (b) Maximum 15 passes
(c) Face refinement: minimum 6 cell across face (c) S-parameter Threshold: 0.0025

(d) Edge refinement: 6 additional cells around edges

The Figure A1 shows the Return Loss for the aforementioned CST simulations and
the ANSYS simulation presented in the Result section (Figure 7), which has been tested
with a Maximum Delta S equal to 0.001 and Discrete Sweep Type. The curves highlight a
good matching between the three different simulations (all the curves keep higher than
24.25 dB) and increases the confidence on the simulated results.
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Figure A1. Comparison between the results provided by the different simulation software.
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