164 research outputs found

    Comparing Matrix-based and Matrix-free Discrete Adjoint Approaches to the Euler Equations

    Get PDF

    What is the optimal shape of a pipe?

    Get PDF
    We consider an incompressible fluid in a three-dimensional pipe, following the Navier-Stokes system with classical boundary conditions. We are interested in the following question: is there any optimal shape for the criterion "energy dissipated by the fluid"? Moreover, is the cylinder the optimal shape? We prove that there exists an optimal shape in a reasonable class of admissible domains, but the cylinder is not optimal. For that purpose, we explicit the first order optimality condition, thanks to adjoint state and we prove that it is impossible that the adjoint state be a solution of this over-determined system when the domain is the cylinder. At last, we show some numerical simulations for that problem

    Strong and auxiliary forms of the semi-Lagrangian method for incompressible flows

    No full text
    We present a review of the semi-Lagrangian method for advection-diusion and incompressible Navier-Stokes equations discretized with high-order methods. In particular, we compare the strong form where the departure points are computed directly via backwards integration with the auxiliary form where an auxiliary advection equation is solved instead; the latter is also referred to as Operator Integration Factor Splitting (OIFS) scheme. For intermediate size of time steps the auxiliary form is preferrable but for large time steps only the strong form is stable

    Artificial boundaries and formulations for the incompressible Navier-Stokes equations. Applications to air and blood flows.

    Get PDF
    International audienceWe deal with numerical simulations of incompressible Navier-Stokes equations in truncated domain. In this context, the formulation of these equations has to be selected carefully in order to guarantee that their associated artificial boundary conditions are relevant for the considered problem. In this paper, we review some of the formulations proposed in the literature, and their associated boundary conditions. Some numerical results linked to each formulation are also presented. We compare different schemes, giving successful computations as well as problematic ones, in order to better understand the difference between these schemes and their behaviours dealing with systems involving Neumann boundary conditions. We also review two stabilization methods which aim at suppressing the instabilities linked to these natural boundary conditions

    Stochastic Galerkin Method for Optimal Control Problem Governed by Random Elliptic PDE with State Constraints

    Get PDF
    In this paper, we investigate a stochastic Galerkin approximation scheme for an optimal control problem governed by an elliptic PDE with random field in its coefficients. The optimal control minimizes the expectation of a cost functional with mean-state constraints. We first represent the stochastic elliptic PDE in terms of the generalized polynomial chaos expansion and obtain the parameterized optimal control problems. By applying the Slater condition in the subdifferential calculus, we obtain the necessary and sufficient optimality conditions for the state-constrained stochastic optimal control problem for the first time in the literature. We then establish a stochastic Galerkin scheme to approximate the optimality system in the spatial space and the probability space. Then the a priori error estimates are derived for the state, the co-state and the control variables. A projection algorithm is proposed and analyzed. Numerical examples are presented to illustrate our theoretical results

    Optimal swimming of flagellated micro-organisms

    No full text
    • …
    corecore