133 research outputs found

    Trouble Finding the Optimal AdS/QCD

    Get PDF
    In the bottom-up approach to AdS/QCD based on a five-dimensional gravity dilaton action the exponential of the dilaton field is usually identified as the strong or 't Hooft coupling. There is currently no model known which fits the measurements of the running coupling and lattice results for pressure at the same time. With a one parametric toy model we demonstrate the effect of fitting the pressure on the coupling and vice versa.Comment: 4 pages, 3 figure

    Effects of the Running of the QCD Coupling on the Energy Loss in the Quark-Gluon Plasma

    Get PDF
    Finite temperature modifies the running of the QCD coupling alpha_s(k,T) with resolution k. After calculating the thermal quark and gluon masses selfconsistently, we determine the quark-quark and quark-gluon cross sections in the plasma based on the running coupling. We find that the running coupling enhances these cross sections by factors of two to four depending on the temperature. We also compute the energy loss dE/dx of a high-energy quark in the plasma as a function of temperature. Our study suggests that, beside t-channel processes, inverse Compton scattering is a relevant process for a quantitative understanding of the energy loss of an incident quark in a hot plasma.Comment: 14 pages, 6 figure

    Mutual boosting of the saturation scales in colliding nuclei

    Get PDF
    Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. The DGLAP driven gluon distribution turns out to be suppressed at large x, but significantly enhanced at x<<1. This is a high twist effect. In the case of nucleus-nucleus collisions all participating nucleons on both sides get enriched in gluon density at small x, which leads to a further boosting of the saturation scale. We derive reciprocity equations for the saturation scales corresponding to a collision of two nuclei. The solution of these equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q_{sA}^2, in AA compared with pA collisions.Comment: 12 pages, 4 figures. Extended version to be published in Phys. Lett.

    Heavy quarkonium production: Nontrivial transition from pA to AA collisions

    Full text link
    Two novel QCD effects, double color filtering and mutual boosting of the saturation scales in colliding nuclei, affect the transparency of the nuclei for quark dipoles in comparison with proton-nucleus collisions. The former effect increases the survival probability of the dipoles, since color filtering in one nucleus makes the other one more transparent. The second effect acts in the opposite direction and is stronger, it makes the colliding nuclei more opaque than in the case of pA collisions. As a result of parton saturation in nuclei the effective scale is shifted upwards, what leads to an increase of the gluon density at small x. This in turn leads to a stronger transverse momentum broadening in AA compared with pA collisions, i.e. to an additional growth of the saturation momentum. Such a mutual boosting leads to a system of reciprocity equations, which result in a saturation scale, a few times higher in AA than in pA collisions at the energies of LHC. Since the dipole cross section is proportional to the saturation momentum squared, the nuclei become much more opaque for dipoles in AA than in pA collisions. For the same reason gluon shadowing turns out to be boosted to a larger magnitude compared with the product of the gluon shadowing factors in each of the colliding nuclei. All these effects make it more difficult to establish a baseline for anomalous J/Psi suppression in heavy ion collisions at high energies.Comment: 10 pages 8 figures. The accuracy of calculations is improve

    Thermodynamics of AdS/QCD within the 5D dilaton-gravity model

    Full text link
    We calculate the pressure, entropy density, trace anomaly and speed of sound of the gluon plasma using the dilaton potential of Ref. arXiv:0911.0627[hep-ph] in the dilaton-gravity theory of AdS/QCD. The finite temperature observables are calculated from the Black Hole solutions of the Einstein equations, and using the Bekenstein-Hawking equality of the entropy with the area of the horizon. Renormalization is well defined, because the T=0 theory has asymptotic freedom. Comparison with lattice simulations is made.Comment: 4 pages, 4 figures. To appear in the proceedings of 15th International Conference in Quantum Chromodynamics (QCD 10), Montpellier, France, 28 Jun - 3 Jul 201
    corecore