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Trouble finding the optimal AdS/QCD
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In the bottom-up approach to AdS/QCD based on a five-dimensional gravity dilaton action the exponential
of the dilaton field is usually identified as the strong or ’t Hooft coupling. There is currently no model
known which fits the measurements of the running coupling and lattice results for pressure at the same
time. With a one parametric toy model we demonstrate the effect of fitting the pressure on the coupling
and vice versa.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In the bottom-up approach to AdS/QCD we modify the Malda-
cena duality [1] between N = 4 super-Yang–Mills theory and Type
IIB string theory of AdS5 × S5 to find a holographic dual for QCD.
We break the conformal invariance by adding a non-trivial dilaton
potential V (φ) to the bulk action [2–4]

Sbulk = −1

16πG5

∫ √
G

(
R − 4

3
(∂μφ)2 − V (φ)

)
d5x. (1.1)

The five-sphere S5 is of no importance for the purpose of this Let-
ter. The integration is performed over Euclidean space-time with
periodic time axis and the bulk coordinate z. The main challenge
is to find the correct potential. One approach would be to make
directly an ansatz for V . Instead we will use b0(z), given by the
zero temperature solution of the Einstein equations

ds2 = b2
0(z)

(
dτ 2 + d�x · d�x + dz2), (1.2)

to define an energy scale. The β-function is then given by

β(α) = b0
dα

db0
. (1.3)

The running coupling α on the gauge side of the duality cor-
responds to the exponential of the dilaton field exp(φ). The β-
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function then fixes the potential which is obtained from the zero
temperature Einstein equations [2,3,5]

∂z W0 = 16

9
b0W 2

0 + 3

4
b0 V (α0), (1.4)

∂zb0 = −4

9
b2

0W0, (1.5)

∂zα0 = α0

√
b0∂z W0. (1.6)

namely1

V (α) = −12

�2
exp

(
−8

9

α∫
0

β(α̃)

α̃2
dα̃

)(
1 −

(
β(α)

3α

)2)
. (1.7)

W0 is defined by Eq. (1.5) to reduce Einstein equations to first
order. Thus, up to the constant factor 12/�2 the dilaton potential
is fixed by the β-function.

A holographic model is meant to capture infrared physics as,
according to the AdS/CFT correspondence the gravity description of
the super-Yang–Mills theory applies to the large ’t Hooft coupling
limit λt = g2

YMNc → ∞. The ultraviolet behavior physics computed
from a gravity dual is known to show often a wrong behavior. For
example, consider a holographic model with the β-function

βpert(α) = −β0α
2 − β1α

3, (1.8)

in the ultraviolet. The asymptotic behavior of the spatial string
tension computed from the gravity dual in the limit T → ∞ is

1 The minus signs in the dilaton potential and in front of V (φ) in Eq. (1.1) are a
matter of convention.
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σs ∝ T 2α4/3 [6,7] instead of σs ∝ T 2α2 as it follows from dimen-
sional reduction arguments and lattice simulations [8,9]. Similarly
if we compare the asymptotic behavior of the pressure [10,7]

p = π3�3

16G5
T 4

(
1 − 4

3
β0αh + 2

9

(
4β2

0 − 3β1
)
α2

h

)
= pSB

(
1 − 2.33αh + 1.86α2

h

)
, (1.9)

with the perturbative result from QCD [11]

p = 8π2

45
T 4

(
1 − 15

4

α

π
+ 30

(
α

π

)3/2)
= pSB

(
1 − 1.19α + 5.4α3/2), (1.10)

we see that not only the coefficients are different but also the
power of α in the next to leading order. Note, perturbation the-
ory gives the coupling at the black hole horizon αh = α(zh) equal
to α(π T ) in QCD in lowest order. In many cases, like the spa-
tial string tension, the ultraviolet limit does not prevent the model
from capturing the infrared physics, but in the case of the pres-
sure the situation is different. The gravity model suggests a smaller
pressure than perturbative QCD at very high temperatures, as we
can see from a comparison of the coefficients at O(α) in Eqs. (1.9)
and (1.10). If the pressure is already much too small at 103Tc , it
has a tendency to be also much too small at lower temperatures.

We will consider a simple β-function and demonstrate that as
we switch over at smaller values of α̂ from βpert to an asymp-
totic linear behavior the pressure gets larger. Fitting lattice results
requires α̂ � 0.04.

2. The model

We assume the following toy β-function to demonstrate our
case:

β(α) =
{

βpert(α) − β̂2α
4 if α � α̂,

βpert(α̂) − β̂2α̂
4 − 3(α − α̂) if α > α̂,

(2.1)

where

β̂2 = 3 − 2β0α̂ − 3β1α̂
2

4α̂3
, (2.2)

is chosen such that ∂αβ(α) is continuous. There is only one param-
eter α̂ which controls the transition point. Note that β̂2 will be-
come very large for small α̂ such that β(α) deviates from βpert(α)

already at α much smaller than α̂. The slope of the linear term is
chosen to be −3. With this choice, according to Eq. (1.7) we obtain
a monotonic potential with the following asymptotic behaviors:

V (α) → −12/�2; α → 0, (2.3)

V (α) ∼ −α5/3; α → ∞. (2.4)

3. The pressure

The deconfined phase of the gluon plasma is described in the
holographic picture by a black hole geometry with the metric

ds2 = b2(z)

(
f (z)dτ 2 + d�x · d�x + dz2

f (z)

)
. (3.1)

The horizon lies in the bulk at zh where f (zh) = 0. We normalize
f (0) to 1. In order to avoid a conical singularity the periodicity of
the τ axes β = T −1 must be fixed to [12,13]

β = − 4π

∂z f (z)

∣∣∣∣ . (3.2)

z=zh
Fig. 1. Pressure normalized to the Stefan-Boltzmann pressure as a function of T /Tc

compared with lattice data for Nc = 3 taken from Ref. [8].

The zero temperature solution serves as background. Any finite
temperature solution shares the same ultraviolet behavior as the
zero temperature solution up to O(z4). The physical action is given
by the difference between the action of the black hole solutions
and the zero temperature solution

Sphys. = ST − S0, (3.3)

where ST and S0 are actions given by the bulk term Eq. (1.1) plus
the Gibbons–Hawking–York boundary term [13,14]

Sbound. = 1

8πG5

∫
dx4√g K . (3.4)

The induced metric on the boundary is g and K is the trace of
the second fundamental form of the boundary. For temperatures
T larger than some Tmin we find three solutions, the zero tem-
perature solution (temperature independent) and two black hole
solutions. For T < Tmin the black hole solutions are not present.
The solution with the smaller physical action defines the stable
gluonic matter. The phase of confined gluons is given from T = 0
up to T = Tc by the zero temperature solution. Black hole solu-
tions exist for temperatures higher than some Tmin, the big black
holes have a smaller action than the small black holes and for
T > Tc a negative physical action (relative to the T = 0 solution).
The black hole geometry corresponds to the deconfined phase. De-
tails of the computation can be found in Ref. [7]. The free energy
can be computed directly from the physical action as F = T Sphys.
or by integrating the entropy

F =
∫

S dT . (3.5)

The entropy of a classical black hole is a well defined quantity
given by the Bekenstein–Hawking formula [15,16]

S = A

4G5
= Vol(3)b3(zh)

4G5
, (3.6)

where A is the area of the black hole horizon. Both methods pro-
duce the same result but the latter approach is numerically favor-
able [7]. Thermodynamic quantities can then be computed from
the free energy. The five-dimensional gravitational constant G5 is
fixed by normalizing the pressure given in Eq. (1.9) to the Stefan–
Boltzmann pressure in the limit T → ∞:

G5 = 45π�3

16(N2
c − 1)

. (3.7)

This value differs from the conformal case because we have fewer
degrees of freedom in QCD than in N = 4 super Yang–Mills
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Fig. 2. The running coupling α as a function energy E = ΛE b0. Data points are taken
from Ref. [18]. The curve corresponding to α̂ = 0.02 is shown for two different
choices of ΛE .

theory [17]. We have computed the pressure using Bekenstein–
Hawking entropy for different choices of α̂. The results normalized
to the ideal gas limit are shown in Fig. 1. Lattice data from Tc

up to 2Tc are fitted very well for α̂ = 0.04. The choice α̂ = 0.02
gives the best fit from Tc up to 3Tc . Some other curves are also
shown for comparison. Data above 3Tc are not fitted precisely by
any choice of α̂.

4. The running coupling and screening mass

It is interesting to see how the running coupling α is affected
by the choice of α̂. The weak coupling expansion Eq. (1.9) already
suggests that the coupling must be very small when we want to fit
the pressure. First we discuss the zero temperature running cou-
pling as a function of energy E , which we denote by αE . Since
we define the β-function with b0 as given in Eq. (1.3), the energy
is proportional to b0(z). The proportionality constant ΛE is not
fixed by the model. Different values of ΛE correspond to differ-
ent initial conditions for the renormalization group equation (1.3).
Fig. 2 shows αE as a function of energy E in logarithmic scale. Dif-
ferent values of ΛE shift the curves to the left or right without
affecting their shape since log(E = ΛEb0) = log(ΛE )+ log(b0). This
is demonstrated for the case α̂ = 0.02, where we fix ΛE either
by

αE(1.78 GeV) = 0.33 (4.1)

or by

αE(M Z = 91.2 GeV) = 0.118 (4.2)

according to Ref. [18]. A small value of α̂ results in a very small
coupling at high energies. As a side effect the curve becomes also
very flat, there is almost no running at high energies. On the other
hand the coupling rises extremely fast in the infrared. This differs
from the case α̂ = 0.5 which is a much better fit to the MS value
in the plotted range.

The chosen β-function for α̂ = 0.5 can reproduce the running
coupling in vacuum quite well. The coupling at finite temperatures
defined as αh(T ) = α(zh) follows the vacuum coupling constant
in the ultraviolet [4,7]. Thus αh is also very small at high tem-
peratures. In order to test the model at finite temperatures T , it
is important to monitor the behavior of an observable which is
closely related to the coupling at finite temperatures. To this end
we have computed the Debye mass in the gluon plasma. We use
Fig. 3. Debye mass over temperature as a function of T /Tc . The full (blue) curves
correspond to computations using α̂ = 0.02 and α̂ = 0.5. Lattice data are taken for
gluodynamics SU(3) with N3

σ × Nτ = 323 ×4 and 323 ×8 from Refs. [20,21]. The dot
dashed (red) curves represent the finite temperature running coupling (4πα(zh))1/2

for both cases. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this Letter.)

the method presented in Ref. [19]. The results for α̂ = 0.02 and
α̂ = 0.5 are plotted in Fig. 3 together with lattice data [20,21].
The model with α̂ = 0.02 predicts a value for the Debye mass
which is a factor 4 smaller than lattice data. This is a conse-
quence of the fact that the running coupling αh is very small at
high temperature for this choice of α̂. For the large α̂ = 0.5 the
Debye mass is quite close to the lattice data as one can see in
Fig. 3.

5. Summary and conclusion

The β-function, on the one hand defines the running of the
coupling and on the other hand determines the dilaton potential
and hence the full thermodynamics including the pressure and the
screening mass. Following the idea of AdS/CFT we identify the ex-
ponential of the dilaton field as the running coupling of QCD. But,
when we fit the pressure, the running coupling α and the screen-
ing mass in the plasma mD deviate strongly from phenomenology.
On the other side, if we choose to fit α or mD , we obtain a pres-
sure that is about 40% too small. This outcome is not just a prop-
erty of the model introduced here cf. [22,10,23]. In the literature
Refs. [22,10] both approaches have been covered. In ref. [22] a very
good description of the thermodynamics has been achieved, how-
ever at the expense of not being able to relate the dilaton potential
with the running α(E) in the MS scheme. Note, one could argue,
that in the scheme used here with a large coefficient β̂2α

4 in the
β-function, the MS-value of αMS(E) = 0.33 at E = 1.78 GeV is not
realistic. But as shown in Section 4 any other choice leads to the
same result. Also the second thermodynamic observable, the De-
bye mass, points to a real deficit for this choice of small α̂. For
our toy model as well as for the model of Ref. [22] there is cur-
rently no known mapping between the assumed β-function and
known MS values of α [24]. This would be very much needed if
one wants to apply this model to hadronization. In Ref. [10] an
extrapolation of the β-function was used which agrees well the
perturbative running of αMS [5]. The calculations of the thermo-
dynamics however have the default shown by the toy-model for
α̂ ≈ 0.5. It produces a pressure which is at all temperatures too
small, whereas the calculation of the Debye mass comes out in
agreement with the lattice data. At the moment we do not know
any solution of this dilemma.
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