20 research outputs found

    Tbx3: another important piece fitted into the pluripotent stem cell puzzle

    Get PDF
    Induced pluripotent stem cells (iPSCs) are novel tools for biomedical research, with a promise for future regenerative medicine applications. Recently, Han and colleagues reported in Nature that T box gene 3 (Tbx3) can improve the quality of mouse iPSCs and increase their germline transmission efficacy. This observation contributes greatly to the improvement of iPSC technology and might be a step towards 'designer' reprogramming strategies by generating high quality iPSCs. Further studies comparing pluripotency regulation in different species, including that in human, will be necessary to verify the universal role of Tbx3 and the medical relevance of the observation

    Conditional and constitutive expression of a Tbx1-GFP fusion protein in mice.

    Get PDF
    BACKGROUND: Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) is caused by a 1.5-3 Mb microdeletion of chromosome 22q11.2, frequently referred to as 22q11.2 deletion syndrome (22q11DS). This region includes TBX1, a T-box transcription factor gene that contributes to the etiology of 22q11DS. The requirement for TBX1 in mammalian development is dosage-sensitive, such that loss-of-function (LOF) and gain-of-function (GOF) of TBX1 in both mice and humans results in disease relevant congenital malformations. RESULTS: To further gain insight into the role of Tbx1 in development, we have targeted the Rosa26 locus to generate a new GOF mouse model in which a Tbx1-GFP fusion protein is expressed conditionally using the Cre/LoxP system. Tbx1-GFP expression is driven by the endogenous Rosa26 promoter resulting in ectopic and persistent expression. Tbx1 is pivotal for proper ear and heart development; ectopic activation of Tbx1-GFP in the otic vesicle by Pax2-Cre and Foxg1-Cre represses neurogenesis and produces morphological defects of the inner ear. Overexpression of a single copy of Tbx1-GFP using Tbx1Cre/+ was viable, while overexpression of both copies resulted in neonatal lethality with cardiac outflow tract defects. We have partially rescued inner ear and heart anomalies in Tbx1Cre/- null embryos by expression of Tbx1-GFP. CONCLUSIONS: We have generated a new mouse model to conditionally overexpress a GFP-tagged Tbx1 protein in vivo. This provides a useful tool to investigate in vivo direct downstream targets and protein binding partners of Tbx1

    GENERATION OF MOUSE INDUCED PLURIPOTENT STEM CELLS BY PROTEIN TRANSDUCTION.

    Get PDF
    Somatic cell reprogramming has generated enormous interest after the first report by Yamanaka and his coworkers in 2006 on the generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts. Here we report the generation of stable iPSCs from mouse fibroblasts by recombinant protein transduction (Klf4, Oct4, Sox2 and c-Myc), a procedure designed to circumvent the risks caused by integration of exogenous sequences in the target cell genome associated with gene delivery systems. The recombinant proteins were fused in frame to the GST tag for affinity purification and to the TAT-NLS polypeptide to facilitate membrane penetration and nuclear localization. We performed the reprogramming procedure on embryonic fibroblasts from inbred (C57BL6) and outbred (ICR) mouse strains. The cells were treated with purified proteins four times, at 48-hour intervals, and cultured on mitomycin C treated MEF (mouse embryonic fibroblast) cells in complete embryonic stem cell medium until colonies formed. The iPSCs generated from the outbred fibroblasts exhibited similar morphology and growth properties to embryonic stem (ESC) cells and were sustained in an undifferentiated state for more than 20 passages. The cells were checked for pluripotency-related markers (Oct4, Sox2, Klf4, cMyc, Nanog) by immunocytochemistry and by RT-PCR. The protein iPSCs (piPSCs) formed EBs and subsequently differentiated towards all three germ layer lineages. Importantly the piPSCs could incorporate into the blastocyst and led to variable degrees of chimerism in newborn mice. These data show that recombinant purified cell-penetrating proteins are capable of reprogramming mouse embryonic fibroblasts to iPSCs. We also demonstrated that the cells of the generated cell line satisfied all the requirements of bona fide mouse ESC cells: form round colonies with defined boundaries; have a tendency to attach together with high nuclear/cytoplasmic ratio; express key pluripotency markers; and are capable of in vitro differentiation into ecto-, endo-, and mesoderm, and in vivo chimera formation

    Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription

    Get PDF
    Separation of germline cells from somatic lineages is one of the earliest decisions of embryogenesis. Genes expressed in germline cells include apoptotic and meiotic factors, which are not transcribed in the soma normally, but a number of testis-specific genes are active in numerous cancer types. During germ cell development, germ-cell-specific genes can be regulated by specific transcription factors, retinoic acid signaling and multimeric protein complexes. Non-canonical polycomb repressive complexes, like ncPRC1.6, play a critical role in the regulation of the activity of germ-cell-specific genes. RING1 and YY1 binding protein (RYBP) is one of the core members of the ncPRC1.6. Surprisingly, the role of Rybp in germ cell differentiation has not been defined yet. This review is focusing on the possible role of Rybp in this process. By analyzing whole-genome transcriptome alterations of the Rybp-/- embryonic stem (ES) cells and correlating this data with experimentally identified binding sites of ncPRC1.6 subunits and retinoic acid receptors in ES cells, we propose a model how germ-cell-specific transcription can be governed by an RYBP centered regulatory network, underlining the possible role of RYBP in germ cell differentiation and tumorigenesis

    Rybp, a polycomb complex-associated protein, is required for mouse eye development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rybp (Ring1 and YY1 binding protein) is a zinc finger protein which interacts with the members of the mammalian polycomb complexes. Previously we have shown that Rybp is critical for early embryogenesis and that haploinsufficiency of <it>Rybp </it>in a subset of embryos causes failure of neural tube closure. Here we investigated the requirement for <it>Rybp </it>in ocular development using four <it>in vivo </it>mouse models which resulted in either the ablation or overexpression of <it>Rybp</it>.</p> <p>Results</p> <p>Our results demonstrate that loss of a single <it>Rybp </it>allele in conventional knockout mice often resulted in retinal coloboma, an incomplete closure of the optic fissure, characterized by perturbed localization of <it>Pax6 </it>but not of <it>Pax2</it>. In addition, about one half of <it>Rybp-/- <-> Rybp+/+ </it>chimeric embryos also developed retinal colobomas and malformed lenses. Tissue-specific transgenic overexpression of <it>Rybp </it>in the lens resulted in abnormal fiber cell differentiation and severe lens opacification with increased levels of <it>AP-2α </it>and <it>Sox2</it>, and reduced levels of <it>βA4-crystallin </it>gene expression. Ubiquitous transgenic overexpression of <it>Rybp </it>in the entire eye caused abnormal retinal folds, corneal neovascularization, and lens opacification. Additional changes included defects in anterior eye development.</p> <p>Conclusion</p> <p>These studies establish <it>Rybp </it>as a novel gene that has been associated with coloboma. Other genes linked to coloboma encode various classes of transcription factors such as <it>BCOR</it>, <it>CBP</it>, <it>Chx10</it>, <it>Pax2</it>, <it>Pax6</it>, <it>Six3</it>, <it>Ski</it>, <it>Vax1 </it>and <it>Vax2</it>. We propose that the multiple functions for <it>Rybp </it>in regulating mouse retinal and lens development are mediated by genetic, epigenetic and physical interactions between these genes and proteins.</p

    Promoter analysis of the rabbit POU5F1 gene and its expression in preimplantation stage embryos

    Get PDF
    Background: The POU5F1 gene encodes the octamer-binding transcription factor-4 (Oct4). It is crucial in the regulation of pluripotency during embryonic development and widely used as molecular marker of embryonic stem cells (ESCs). The objective of this study was to identify and to analyse the promoter region of rabbit POU5F1 gene; furthermore to examine its expression pattern in preimplantation stage rabbit embryos. [br/] Results: The upstream region of rabbit POU5F1 was subcloned sequenced and four highly conserved promoter regions (CR1-4) were identified. The highest degree of similarity on sequence level was found among the conserved domains between rabbit and human. Among the enhancers the proximal enhancer region (PE-1A) exhibited the highest degree of homology (96.4%). Furthermore, the CR4 regulator domain containing the distal enhancer (DE-2A) was responsible for stem cell-specific expression. Also, BAC library screen revealed the existence of a processed pseudogene of rabbit POU5F1. The results of quantitative real-time PCR experiments showed that POU5F1 mRNA was abundantly present in oocytes and zygotes, but it was gradually reduced until the activation of the embryonic genome, thereafter a continuous increase in POU5F1 mRNA level was observed until blastocyst stage. By using the XYClone laser system the inner cell mass (ICM) and trophoblast portions of embryos were microdissected and examined separately and POU5F1 mRNA was detected in both cell types. [br/] Conclusion: In this study we provide a comparative sequence analysis of the regulatory region of rabbit POU5F1 gene. Our data suggest that the POU5F1 gene is strictly regulated during early mammalian development. We proposed that the well conserved CR4 region containing the DE-2A enhancer is responsible for the highly conserved ESC specific gene expression. Notably, we are the first to report that the rabbit POU5F1 is not restricted to ICM cells only, but it is expressed in trophoblast cells as well. This information may be well applicable to investigate further the possible phylogenetic role and the regulation of POU5F1 gene

    Chromatin remodeling enzyme Brg1 is required for mouse lens fiber cell terminal differentiation and its denucleation

    Get PDF
    These studies demonstrate a cell-autonomous role for Brg1 in lens fiber cell terminal differentiation and identified DNase IIβ as a potential direct target of SWI/SNF complexes. Brg1 is directly or indirectly involved in processes that degrade lens fiber cell chromatin. The presence of nuclei and other organelles generates scattered light incompatible with the optical requirements for the lens
    corecore