52 research outputs found

    Self-Assembling Supramolecular Hybrid Hydrogel Beads

    Get PDF
    With the goal of imposing shape and structure on supramolecular gels, we combine a low molecular weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended inter-penetrating network or core-shell structured gel beads – a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating Pd(II) and reducing it in situ to yield catalytically-active Pd(0) nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki-Miyaura reaction, constituting a simple and easy-to-use reaction dosing form. These unique shaped and structured LMWG-filled gel beads are a versatile platform technology, with great potential in a range of applications

    Self-Propelling Hybrid Gels Incorporating an Active Self-Assembled Low-Molecular-Weight Gelator

    Get PDF
    Hybrid gel beads based on combining a low-molecular-weight gelator (LMWG) with a polymer gelator (PG) demonstrate enhanced ability to self-propel in water, with the LMWG playing an active role. Hybrid gel beads were loaded with ethanol and shown to move in water via ‘Marangoni effect’ surface tension changes caused by the expulsion of ethanol – smaller beads move further and faster than larger beads. Flat shapes of the hybrid gel were cut using a ‘stamp’ – circles moved the furthest while stars showed more rotational movement on their own axis. Comparing hybrid LMWG/PG gel beads with PG-only beads demonstrated that the LMWG speeds up the beads, enhancing the rate of self-propulsion. Self-assembly of the LMWG into a ‘solid-like’ network prevents its leaching from the gel. The LMWG also retains its own unique function – specifically, remediating methylene blue pollutant dye from basic water as a result of non-covalent interactions. The mobile hybrid beads accumulate this dye more effectively than PG-only beads. Self-propelling gel beads have potential applications in removal/delivery of active agents in environmental or biological settings. The ability of self-assembling LMWGs to enhance mobility and control removal/delivery, suggests that adding them into self-propelling systems can add significant value

    Spatial and Temporal Diffusion-Control of Dynamic Multi-Domain Self-Assembled Gels

    Get PDF
    The dynamic assembly of a pH-responsive low-molecular-weight gelator (LMWG) within the pre-formed matrix of a second LMWG has been achieved via diffusion of an acid from a reservoir cut into the gel. Self-assembly of the acid-triggered LMWG as it converts from micellar aggregates at basic pH into gel nanofibers at lower pH values can be both spatially and temporally controlled. The pH-responsive LMWG has an impact on the stiffness of the pre-formed gel in the domains in which it assembles. When low acid concentrations are used, LMWG assembly is transient – after the initial proton diffusion phase, the pH rises and disassembly occurs as the system equilibrates. Re-application of additional acid as ‘fuel’ can then re-assemble the LMWG network. Using glucono-delta-lactone (which slowly hydrolyses to gluconic acid) instead of HCl gives slower, more spatially-restricted assembly, and creates longer-lasting pH gradients within the gel. The presence of an agarose polymer gel network improves the mechanical strength of the gels and appears to slightly enhance the rate of proton diffusion. More sophisticated reservoir shapes can be cut into these more mechanically robust gels, enabling the creation of diffusion waves with different geometries, and hence different patterns of LMWG activation. Multiple reservoirs can be used to create overlapping proton diffusion waves, hence achieving differentiated pH patterns in the gel. Using acid diffusion in this way within gels is an intriguing and powerful way of dynamic patterning. The ability to temporally-evolve spatially-resolved patterns using biocompatible weak acids, and the change in rheological performance of the triggered domains, suggest potential future applications of this strategy in tissue engineering

    Hybrid Self-Assembled Gel Beads for Tunable pH-Controlled Rosuvastatin Delivery

    Get PDF
    This article describes the fabrication of new pH-responsive hybrid gel beads based on combining the polymer gelator calcium alginate with two different low molecular weight gelators (LMWGs) based on 1,3:2,4-dibenzylidene-D-sorbitol: pH-responsive DBS-COOH and thermally-responsive DBS-CONHNH2, clearly demonstrating that different classes of LMWG can be fabricated into gel beads using this approach. We also demonstrate that self-assembled multi-component gel beads can be formed using different combinations of these gelators. The different gel bead formulations exhibit different responsiveness – the DBS-COOH network can disassemble within those beads in which it is present on raising the pH. To exemplify preliminary data for a potential application for these hybrid gel beads, we explored aspects of the delivery of the lipid-lowering active pharmaceutical ingredient (API) rosuvastatin. The release profile of this statin from the hybrid gel beads is pH-dependent, with greater release at pH 7.4 than at pH 4.0 – primary control of this process results from the pKa of the API. The extent of pH-mediated API release, is also significantly further modified according to gel bead composition. The DBS-COOH/alginate beads show rapid, highly effective drug release at pH 7.4, while the three-component DBS-COOH/DBS-CONHNH2/alginate system shows controlled slow release of the API under the same conditions. These initial results indicate that such gel beads constitute a promising, versatile and easily tuned platform suitable for further development for controlled drug delivery applications

    Combining gellan gum with a functional low-molecular-weight gelator to assemble stiff shaped hybrid hydrogels for stem cell growth

    Get PDF
    We report hybrid hydrogels that combine gellan gum (GG) polymer gelator (PG) with a low-molecular weight gelator (LMWG) based on 1,3:2,4-dibenzylidene sorbitol (DBS). We fabricate these gels into beads using a heat–cool cycle to set the LMWG gel and then using different calcium sources (CaCl2 and CaCO3) to subsequently crosslink the gellan gum. In the case of CaCO3, glucono-δ-lactone (GdL) is used as a slow acidification agent to slowly solubilise calcium ions and induce GG crosslinking. Alternatively the photoacid generator, diphenyliodonium nitrate (DPIN) can be used with UV irradiation to solubilise CaCO3 and induce GG gelation, in which case, a photomask applied to gels made in trays yields photopatterned gels. Combining the LMWG with gellan gum further enhances the stiffness of GG, and importantly, makes the gels significantly more resistant to shear strain. LMWG/GG hybrid gels are considerably stiffer than equivalent LMWG/alginate gels. The DBS-CONHNH2 LMWG retains its unique ability to reduce precious metal salts to nanoparticles (NPs) within the hybrid gel beads, as demonstrated by the in situ fabrication of AgNPs. The hybrid gel beads support the growth of human mesenchymal stem cells for extended periods of time. We suggest that the favourable rheological properties of these hybrid gels, combined with the ability of the LMWG to form AgNPs in situ, may enable potential future orthopedic applications

    Self-Assembled Supramolecular Hybrid Hydrogel Beads Loaded with Silver Nanoparticles for Antimicrobial Application

    Get PDF
    This paper reports the formation of silver (Ag) NPs within spatially-resolved two-component hydrogel beads that combine a low-molecular-weight gelator (LMWG) DBS-CONHNH2 and a polymer gelator (PG) calcium alginate. The AgNPs are formed via in situ reduction of Ag(I), with the resulting nanoparticle-loaded gels being characterised in detail. We tested the antibacterial activity of the nanocomposite gel beads against two drug-resistant bacterial strains, often associated with hospital-acquired infections: vancomycin-resistant Enterococcus faecium (VRE) and Pseudomonas aeruginosa (PA14), and the AgNP-loaded gels showed good antimicrobial properties against both types of bacteria. We suggest that the gel bead format of these AgNP-loaded hybrid hydrogels makes them promising versatile materials for potential applications in orthopaedics or wound healing

    Double diffusion for the programmable spatiotemporal patterning of multi-domain supramolecular gels

    Get PDF
    To achieve spatial resolution of a multi-component gel, a double diffusion approach is used which enables the precise programming of self-assembled patterned domains with well-defined shapes and sizes. The low-molecular-weight gelators (LMWGs) used in this study are pH-responsive DBS-CO2H and thermally-responsive DBS-CONHNH2 (both based on 1,3:2,4-dibenzylidenesorbitol, DBS). A DBS-CONHNH2 gel was initally assembled in a tray, and then loaded at carefully selected positions with either basified DBS-CO2H (i.e. DBS-carboxylate) or an acid. These soluble components subsequently diffuse through the pre-formed gel matrix, and in the domains when/where they mix, protonation of the DBS-carboxylate induces self-assembly of the DBS-CO2H network, leading to a patterned gel-in-gel object with well-defined shape and dimensions. Using a strong acid achieves fast gelation kinetics, creating smaller, better-defined macroscale objects but with less nanoscale order. Using a weak acid source with slow kinetics, gives slightly larger objects, but on the nanoscale the DBS-CO2H network formation is better controlled, giving more homogeneous nanoscale structures and stiffer objects. The patterned objects can be further reinforced by the presence of agarose polymer gelator. The shape of the patterning is programmed by both the shape of the central reservoir and the starting geometry in which the reservoirs are organised, with the balance between factors depending on assembly kinetics, as dictated by the choice of acid. This simple methodology therefore enables programming of patterned gels with spatiotemporal control and emergent patterning characteristics

    Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents

    Get PDF
    We report the preparation of hybrid self-assembled microgel beads by combining the low molecular weight gelator (LMWG) DBS-CONHNH2 and the natural polysaccharide calcium alginate polymer gelator (PG). Microgel formulations based on LMWGs are extremely rare due to the fragility of the self-assembled networks and the difficulty of retaining any imposed shape. Our hybrid beads contain interpenetrated LMWG and PG networks, and are obtained by an emulsion method, allowing the preparation of spherical gel particles of controllable sizes with diameters in the mm or m range. Microgels based on LMWG/alginate can be easily prepared with reproducible diameters < 1m (ca. 800 nm). They are stable in water at room temperature for many months, and survive injection through a syringe. The rapid assembly of the LMWG on cooling plays an active role in helping control the diameter of the microgel beads. These LMWG microbeads retained the ability of the parent gel to deliver the bioactive molecule heparin, and in cell culture medium this enhanced the growth of human mesenchymal stem cells. Such microgels may therefore have future applications in tissue repair. This approach to fabricating LMWG microgels is a platform technology, which could potentially be applied to a variety of different functional LMWGs, and hence has wide-ranging potential

    Self-assembled gel tubes, filaments and 3D-printing with in situ metal nanoparticle formation and enhanced stem cell growth

    Get PDF
    This paper reports simple strategies to fabricate self-assembled artificial tubular and filamentous systems from a low molecular weight gelator (LMWG). In the first strategy, tubular ‘core–shell’ gel structures based on the dibenzylidenesorbitol-based LMWG DBS-CONHNH2 were made in combination with the polymer gelator (PG) calcium alginate. In the second approach, gel filaments based on DBS-CONHNH2 alone were prepared by wet spinning at elevated concentrations using a ‘solvent-switch’ approach. The higher concentrations used in wet-spinning prevent the need for a supporting PG. Furthermore, this can be extended into a 3D-printing method, with the printed LMWG objects showing excellent stability for at least a week in water. The LMWG retains its unique ability for in situ precious metal reduction, yielding Au nanoparticles (AuNPs) within the tubes and filaments when they are exposed to AuCl3 solutions. Since the gel filaments have a higher loading of DBS-CONHNH2, they can be loaded with significantly more AuNPs. Cytotoxicity and viability studies on human mesenchymal stem cells show that the DBS-CONHNH2 and DBS-CONHNH2/alginate hybrid gels loaded with AuNPs are biocompatible, with the presence of AuNPs enhancing stem cell metabolism. Taken together, these results indicate that DBS-CONHNH2 can be shaped and 3D-printed, and has considerable potential for use in tissue engineering applications

    The double-sided of human leukocyte antigen-G molecules in type 1 autoimmune hepatitis

    Get PDF
    The immunomodulatory effects of HLA-G expression and its role in cancers, human liver infections and liver transplantation are well documented, but so far, there are only a few reports addressing autoimmune liver diseases, particularly autoimmune hepatitis (AIH). Method and materialsWe analyzed the genetic and phenotypic characteristics of HLA-G in 205 type 1 AIH patients (AIH-1) and a population of 210 healthy controls from Sardinia (Italy). ResultsAnalysis of the HLA-G locus showed no substantial differences in allele frequencies between patients and the healthy control population. The HLA-G UTR-1 haplotype was the most prevalent in both AIH-1 patients and controls (40.24% and 34.29%). Strong linkage was found between the HLA-G UTR-1 haplotype and HLA-DRB1*03:01 in AIH-1 patients but not controls (D' = 0.92 vs D' = 0.50 respectively; P = 1.3x10(-8)). Soluble HLA-G (sHLA-G) levels were significantly lower in AIH-1 patients compared to controls [13.9 (11.6 - 17.4) U/mL vs 21.3 (16.5 - 27.8) U/mL; P = 0.011]. Twenty-four patients with mild or moderate inflammatory involvement, as assessed from liver biopsy, showed much higher sHLA-G levels compared to the 28 patients with severe liver inflammation [33.5 (23.6 - 44.8) U/mL vs 8.8 (6.1 - 14.5) U/mL; P = 0.003]. Finally, immunohistochemistry analysis of 52 liver biopsies from AIH-1 patients did not show expression of HLA-G molecules in the liver parenchyma. However, a percentage of 69.2% (36/52) revealed widespread expression of HLA-G both in the cytoplasm and the membrane of plasma cells labeled with anti-HLA-G monoclonal antibodies. ConclusionThis study highlights the positive immunomodulatory effect of HLA-G molecules on the clinical course of AIH-1 and how this improvement closely correlates with plasma levels of sHLA-G. However, our results open the debate on the ambiguous role of HLA-G molecules expressed by plasma cells, which are pathognomonic features of AIH-1
    • …
    corecore