153 research outputs found
Parametrised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic
In this paper, we initiate a systematic study of the parametrised complexity
in the field of Dependence Logics which finds its origin in the Dependence
Logic of V\"a\"an\"anen from 2007. We study a propositional variant of this
logic (PDL) and investigate a variety of parametrisations with respect to the
central decision problems. The model checking problem (MC) of PDL is
NP-complete. The subject of this research is to identify a list of
parametrisations (formula-size, treewidth, treedepth, team-size, number of
variables) under which MC becomes fixed-parameter tractable. Furthermore, we
show that the number of disjunctions or the arity of dependence atoms
(dep-arity) as a parameter both yield a paraNP-completeness result. Then, we
consider the satisfiability problem (SAT) showing a different picture: under
team-size, or dep-arity SAT is paraNP-complete whereas under all other
mentioned parameters the problem is in FPT. Finally, we introduce a variant of
the satisfiability problem, asking for teams of a given size, and show for this
problem an almost complete picture.Comment: Update includes refined result
Computing with and without arbitrary large numbers
In the study of random access machines (RAMs) it has been shown that the
availability of an extra input integer, having no special properties other than
being sufficiently large, is enough to reduce the computational complexity of
some problems. However, this has only been shown so far for specific problems.
We provide a characterization of the power of such extra inputs for general
problems. To do so, we first correct a classical result by Simon and Szegedy
(1992) as well as one by Simon (1981). In the former we show mistakes in the
proof and correct these by an entirely new construction, with no great change
to the results. In the latter, the original proof direction stands with only
minor modifications, but the new results are far stronger than those of Simon
(1981). In both cases, the new constructions provide the theoretical tools
required to characterize the power of arbitrary large numbers.Comment: 12 pages (main text) + 30 pages (appendices), 1 figure. Extended
abstract. The full paper was presented at TAMC 2013. (Reference given is for
the paper version, as it appears in the proceedings.
Random geometric complexes
We study the expected topological properties of Cech and Vietoris-Rips
complexes built on i.i.d. random points in R^d. We find higher dimensional
analogues of known results for connectivity and component counts for random
geometric graphs. However, higher homology H_k is not monotone when k > 0. In
particular for every k > 0 we exhibit two thresholds, one where homology passes
from vanishing to nonvanishing, and another where it passes back to vanishing.
We give asymptotic formulas for the expectation of the Betti numbers in the
sparser regimes, and bounds in the denser regimes. The main technical
contribution of the article is in the application of discrete Morse theory in
geometric probability.Comment: 26 pages, 3 figures, final revisions, to appear in Discrete &
Computational Geometr
Making Classical Ground State Spin Computing Fault-Tolerant
We examine a model of classical deterministic computing in which the ground
state of the classical system is a spatial history of the computation. This
model is relevant to quantum dot cellular automata as well as to recent
universal adiabatic quantum computing constructions. In its most primitive
form, systems constructed in this model cannot compute in an error free manner
when working at non-zero temperature. However, by exploiting a mapping between
the partition function for this model and probabilistic classical circuits we
are able to show that it is possible to make this model effectively error free.
We achieve this by using techniques in fault-tolerant classical computing and
the result is that the system can compute effectively error free if the
temperature is below a critical temperature. We further link this model to
computational complexity and show that a certain problem concerning finite
temperature classical spin systems is complete for the complexity class
Merlin-Arthur. This provides an interesting connection between the physical
behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur
Large random simplicial complexes, I
In this paper we introduce a new model of random simplicial complexes
depending on multiple probability parameters. This model includes the
well-known Linial - Meshulam random simplicial complexes and random clique
complexes as special cases. Topological and geometric properties of a
multi-parameter random simplicial complex depend on the whole combination of
the probability parameters and the thresholds for topological properties are
convex sets rather than numbers (as in all previously known models). We discuss
the containment properties, density domains and dimension of the random
simplicial complexes.Comment: 21 pages, 6 figure
All Inequalities for the Relative Entropy
The relative entropy of two n-party quantum states is an important quantity
exhibiting, for example, the extent to which the two states are different. The
relative entropy of the states formed by reducing two n-party to a smaller
number of parties is always less than or equal to the relative entropy of
the two original n-party states. This is the monotonicity of relative entropy.
Using techniques from convex geometry, we prove that monotonicity under
restrictions is the only general inequality satisfied by relative entropies. In
doing so we make a connection to secret sharing schemes with general access
structures.
A suprising outcome is that the structure of allowed relative entropy values
of subsets of multiparty states is much simpler than the structure of allowed
entropy values. And the structure of allowed relative entropy values (unlike
that of entropies) is the same for classical probability distributions and
quantum states.Comment: 15 pages, 3 embedded eps figure
Critical exponents for random knots
The size of a zero thickness (no excluded volume) polymer ring is shown to
scale with chain length in the same way as the size of the excluded volume
(self-avoiding) linear polymer, as , where . The
consequences of that fact are examined, including sizes of trivial and
non-trivial knots.Comment: 4 pages, 0 figure
Clones with finitely many relative R-classes
For each clone C on a set A there is an associated equivalence relation
analogous to Green's R-relation, which relates two operations on A iff each one
is a substitution instance of the other using operations from C. We study the
clones for which there are only finitely many relative R-classes.Comment: 41 pages; proofs improved, examples adde
Abundance of unknots in various models of polymer loops
A veritable zoo of different knots is seen in the ensemble of looped polymer
chains, whether created computationally or observed in vitro. At short loop
lengths, the spectrum of knots is dominated by the trivial knot (unknot). The
fractional abundance of this topological state in the ensemble of all
conformations of the loop of segments follows a decaying exponential form,
, where marks the crossover from a mostly unknotted
(ie topologically simple) to a mostly knotted (ie topologically complex)
ensemble. In the present work we use computational simulation to look closer
into the variation of for a variety of polymer models. Among models
examined, is smallest (about 240) for the model with all segments of the
same length, it is somewhat larger (305) for Gaussian distributed segments, and
can be very large (up to many thousands) when the segment length distribution
has a fat power law tail.Comment: 13 pages, 6 color figure
Tightness of slip-linked polymer chains
We study the interplay between entropy and topological constraints for a
polymer chain in which sliding rings (slip-links) enforce pair contacts between
monomers. These slip-links divide a closed ring polymer into a number of
sub-loops which can exchange length between each other. In the ideal chain
limit, we find the joint probability density function for the sizes of segments
within such a slip-linked polymer chain (paraknot). A particular segment is
tight (small in size) or loose (of the order of the overall size of the
paraknot) depending on both the number of slip-links it incorporates and its
competition with other segments. When self-avoiding interactions are included,
scaling arguments can be used to predict the statistics of segment sizes for
certain paraknot configurations.Comment: 10 pages, 6 figures, REVTeX
- …