147 research outputs found

    From ocean sprawl to blue-green infrastructure:A UK perspective on an issue of global significance

    Get PDF
    Artificial structures are proliferating in the marine environment, resulting in ‘ocean sprawl’. In light of the potential environmental impacts of this, such as habitat loss and alteration, it is becoming increasingly important to incorporate ecologically-sensitive design into artificial marine structures. The principles of eco-engineering and green infrastructure are embedded in urban planning practice for terrestrial and freshwater development projects. In marine planning, however, eco-engineering of blue-green infrastructure remains an emerging concept. This note provides a UK perspective on the progress towards uptake of eco-engineering approaches for enhancing biodiversity on artificial marine structures. We emphasise that, despite a clear ‘policy pull’ to incorporate biodiversity enhancements in marine structures, a range of proof-of-concept evidence that it is possible to achieve, and strong cross-sectoral stakeholder support, there are still few examples of truly and purposefullydesigned blue-green artificial structures in the UK. We discuss the barriers that remain and propose a strategy towards effective implementation. Our strategy outlines a step-wise approach to: (1) strengthening the evidence base for what enhancements can be achieved in different scenarios; (2) improving clarity on the predicted benefits and associated costs of enhancements; (3) packaging the evidence in a useful form to support planning and decision-making; and (4) encouraging implementation as routine practice. Given that ocean sprawl is a growing problem globally, the perspective presented here provides valuable insight and lessons for other nations at their various states of progress towards this same goal

    Multiple-scale interactions structure macroinvertebrate assemblages associated with kelp understory algae

    Get PDF
    Aim: Kelp forests provide habitat and food that supports a high diversity of flora and fauna. While numerous studies have described macroinvertebrates associated with kelp blades, stipes and holdfasts, a key kelp forest microhabitat, epilithic understory algae, remains poorly studied. Here, we used a macroecological approach and artificial seaweed units (ASUs) to explore the effects of ocean climate, wave exposure and habitat complexity on understory algal associated macroinvertebrate assemblages within Laminaria hyperborea forests in the United Kingdom. Location: 9° latitudinal gradient along the north and west coasts of the United Kingdom. Methods: Replicate ASUs comprising four different habitat complexities were deployed under mature L. hyperborea at 2 sites (along a wave exposure gradient, separated by km) within each of 4 locations (separated by 100s km) nested within two regions (warm and cold, spanning 9° of latitude). After 5 months in situ, the ASUs were collected and macroinvertebrates were identified to species level and enumerated. Results: Habitat complexity and wave exposure both influenced macroinvertebrate assemblage structure, but results also showed clear effects of ocean climate, with macroinvertebrate assemblages differing between warm and cool regions, primarily driven by higher diversity and evenness in the warmer region and greater abundance in the cooler region. Main conclusions: Predicted warming and a shift to less complex turf-forming algal assemblages are likely to alter the structure of macroinvertebrate assemblages associated with understory algae, with potential implications for kelp forest food web dynamics

    A global dataset of seaweed net primary productivity

    Get PDF
    Net primary productivity (NPP) plays a pivotal role in the global carbon balance but estimating the NPP of underwater habitats remains a challenging task. Seaweeds (marine macroalgae) form the largest and most productive underwater vegetated habitat on Earth. Yet, little is known about the distribution of their NPP at large spatial scales, despite more than 70 years of local-scale studies being scattered throughout the literature. We present a global dataset containing NPP records for 246 seaweed taxa at 429 individual sites distributed on all continents from the intertidal to 55 m depth. All records are standardized to annual aerial carbon production (g C m(−2) yr(−1)) and are accompanied by detailed taxonomic and methodological information. The dataset presented here provides a basis for local, regional and global comparative studies of the NPP of underwater vegetation and is pivotal for achieving a better understanding of the role seaweeds play in the global coastal carbon cycle

    Environmental factors influencing primary productivity of the forest-forming kelp Laminaria hyperborea in the northeast Atlantic

    Get PDF
    © 2020, The Author(s). Rates and drivers of primary productivity are well understood for many terrestrial ecosystems, but remain poorly resolved for many marine ecosystems, particularly those within in coastal benthic environments. We quantified net primary productivity (NPP) using two methods as well as carbon standing stock within kelp forests (Laminaria hyperborea) at multiple subtidal habitats in the United Kingdom (UK). Study sites spanned 9° in latitude and encompassed a gradient in average temperature of ~ 2.5 °C. In addition to temperature, we measured other factors (e.g. light intensity, water motion, nutrients, sea urchin density) that may influence productivity. Although estimates of NPP were highly variable between sites, ranging from 166 to 738 g C m-2 yr-1, our study-wide average of 340 g C m-2 yr-1 indicated that L. hyperborea forests are highly productive. We observed clear differences between NPP and carbon standing stock between our cold northernmost sites and our warm southernmost sites, with NPP and standing stock being around 1.5 and 2.5 times greater in the northern sites, respectively. Ocean temperature was identified as a likely driver of productivity, with reduced NPP and standing stock observed in warmer waters. Light availability was also strongly linked with carbon accumulation and storage, with increased light levels positively correlated with NPP and standing stock. Across its geographical range, total NPP from L. hyperborea is estimated at ~ 7.61 Tg C yr-1. This biomass production is likely to be important for local food webs, as a trophic subsidy to distant habitats and for inshore carbon cycling and (potentially) carbon sequestration. However, given the strong links with temperature, continued ocean warming in the northeast Atlantic may reduce primary productivity of this foundation species, as optimal temperatures for growth and performance are surpassed

    Evidence for different thermal ecotypes in range centre and trailing edge kelp populations

    Get PDF
    Determining and predicting species’ responses to climate change is a fundamental goal of contemporary ecology. When interpreting responses to warming species are often treated as a single physiological unit with a single species-wide thermal niche. This assumes that trailing edge populations are most vulnerable to warming, as it is here where a species’ thermal niche will be exceeded first. Local adaptation can, however, result in narrower thermal tolerance limits for local populations, so that similar relative increases in temperature can exceed local niches throughout a species range. We used a combination of common garden temperature heat-shock experiments (8–32 °C) and population genetics (microsatellites) to identify thermal ecotypes of northeast Atlantic range centre and trailing edge populations of the habitat-forming kelp, Laminaria digitata. Using upregulation of hsp70 as an indicator of thermal stress, we found that trailing edge populations were better equipped to tolerate acute temperature shocks. This pattern was consistent across seasons, indicating that between-population variability is fixed. High genetic structuring was also observed, with range centre and trailing edge populations representing highly distinct clusters with little gene flow between regions. Taken together, this suggests the presence of distinct thermal ecotypes for L. digitata, which may mean responses to future warming are more complex than linear range contractions. © 2019 Elsevier B.V

    Resistance, Extinction and Everything in Between - The Diverse Responses of Seaweeds to Marine Heatwaves

    Get PDF
    Globally, anomalously warm temperature events have increased by 34% in frequency and 17% in duration from 1925 to 2016 with potentially major impacts on coastal ecosystems. These “marine heatwaves” (MHWs) have been linked to changes in primary productivity, community composition and biogeography of seaweeds, which often control ecosystem function and services. Here we journalarticle the literature on seaweed responses to MHWs, including 58 observations related to resistance, bleaching, changes in abundance, species invasions and local to regional extinctions. More records existed for canopy-forming kelps and bladed and filamentous turf-forming seaweeds than for canopy-forming fucoids, geniculate coralline turf and crustose coralline algae. Turf-forming seaweeds, especially invasive seaweeds, generally increased in abundance after a MHW, whereas native canopy-forming kelps and fucoids typically declined in abundance. We also found four examples of regional extinctions of kelp and fucoids following specific MHWs, events that likely have long term consequences for ecological structure and functioning. Although a relatively small number of studies have described impacts of MHWs on seaweed, the broad range of documented responses highlights the necessity of better baseline information regarding seaweed distributions and performance, and the need to study specific characteristics of MHWs that affect the vulnerability and resilience of seaweeds to these increasingly important climatic perturbations. A major challenge will be to disentangle impacts caused by the extreme temperature increases of MHWs itself from co-occurring potential stressors including altered current patterns, increasing herbivory, changes in water clarity and nutrient content, solar radiation and desiccation stress in the intertidal zone. With future increases anticipated in the intensity, duration and frequencies of MHWs, we expect to see more replacements of large long-lived habitat forming seaweeds with smaller ephemeral seaweeds, reducing the habitat structure and effective services seaweed-dominated reefs can provide

    Ecological performance differs between range centre and trailing edge populations of a cold-water kelp:implications for estimating net primary productivity

    Get PDF
    Kelp forests are extensive, widely distributed and highly productive. However, despite their importance, reliable estimates of net primary productivity (NPP) are currently unknown for most species and regions. In particular, how performance and subsequent NPP change throughout a species range is lacking. Here, we attempted to resolve this by examining growth and performance of the boreal kelp, Laminaria digitata, from range centre and trailing edge regions in the United Kingdom. During the peak growth season (March/April), range-centre individuals were up to three times heavier and accumulated biomass twice as fast as their trailing-edge counterparts. This was not apparent during the reduced growth season (August/September), when populations within both regions had similar biomass profiles. In total, annual NPP estimates were considerably lower for trailing-edge (181±34 g C m−2 year−1) compared to range-centre (344±33 g C m−2 year−1) populations. Our first-order UK estimates of total standing stock and NPP for L. digitata suggest this species makes a significant contribution to coastal carbon cycling. Further work determining the ultimate fate of this organic matter is needed to understand the overall contribution of kelp populations to regional and global carbon cycles. Nevertheless, we highlight the need for large-scale sampling across multiple populations and latitudes to accurately evaluate kelp species’ contributions to coastal carbon cycling
    • 

    corecore