219 research outputs found

    Two-Dimensional Partial-Covariance Mass Spectrometry of Large Molecules Based on Fragment Correlations

    Get PDF
    Covariance mapping [L. J. Frasinski, K. Codling, and P. A. Hatherly, Science 246, 1029 (1989)] is a well-established technique used for the study of mechanisms of laser-induced molecular ionization and decomposition. It measures statistical correlations between fluctuating signals of pairs of detected species (ions, fragments, electrons). A positive correlation identifies pairs of products originating from the same dissociation or ionization event. A major challenge for covariance-mapping spectroscopy is accessing decompositions of large polyatomic molecules, where true physical correlations are overwhelmed by spurious signals of no physical significance induced by fluctuations in experimental parameters. As a result, successful applications of covariance mapping have so far been restricted to low-mass systems, e.g., organic molecules of around 50 daltons (Da). Partial-covariance mapping was suggested to tackle the problem of spurious correlations by taking into account the independently measured fluctuations in the experimental conditions. However, its potential has never been realized for the decomposition of large molecules, because in these complex situations, determining and continuously monitoring multiple experimental parameters affecting all the measured signals simultaneously becomes unfeasible. We introduce, through deriving theoretically and confirming experimentally, a conceptually new type of partial-covariance mapping—self-correcting partial-covariance spectroscopy—based on a parameter extracted from the measured spectrum itself. We use the readily available total ion count as the self-correcting partial-covariance parameter, thus eliminating the challenge of determining experimental parameter fluctuations in covariance measurements of large complex systems. The introduced self-correcting partial covariance enables us to successfully resolve correlations of molecules as large as 10 3 – 10 4     Da , 2 orders of magnitude above the state of the art. This opens new opportunities for mechanistic studies of large molecule decompositions through revealing their fragment-fragment correlations. Moreover, we demonstrate that self-correcting partial covariance is applicable to solving the inverse problem: reconstruction of a molecular structure from its fragment spectrum, within two-dimensional partial-covariance mass spectrometry

    Serological evaluation of possible exposure to Ljungan virus and related parechovirus in autoimmune (type 1) diabetes in children.

    Get PDF
    Exposure to Ljungan virus (LV) is implicated in the risk of autoimmune (type 1) diabetes but possible contribution by other parechoviruses is not ruled out. The aim was to compare children diagnosed with type 1 diabetes in 2005-2011 (n = 69) with healthy controls (n = 294), all from the Jämtland County in Sweden, using an exploratory suspension multiplex immunoassay for IgM and IgG against 26 peptides of LV, human parechoviruses (HPeV), Aichi virus and poliovirus in relation to a radiobinding assay (RBA) for antibodies against LV and InfluenzaA/H1N1pdm09. Islet autoantibodies and HLA-DQ genotypes were also determined. 1) All five LV-peptide antibodies correlated to each other (P < 0.001) in the suspension multiplex IgM- and IgG-antibody assay; 2) The LV-VP1_31-60-IgG correlated with insulin autoantibodies alone (P = 0.007) and in combination with HLA-DQ8 overall (P = 0.022) as well as with HLA-DQ 8/8 and 8/X subjects (P = 0.013); 3) RBA detected LV antibodies correlated with young age at diagnosis (P < 0.001) and with insulin autoantibodies (P < 0.001) especially in young HLA-DQ8 subjects (P = 0.004); 4) LV-peptide-VP1_31-60-IgG correlated to RBA LV antibodies (P = 0.009); 5) HPeV3-peptide-IgM and -IgG showed inter-peptide correlations (P < 0.001) but only HPeV3-VP1_1-30-IgG (P < 0.001) and VP1_95-124-IgG (P = 0.009) were related to RBA LV antibodies without relation to insulin autoantibody positivity (P = 0.072 and P = 0.486, respectively). Both exploratory suspension multiplex IgG to LV-peptide VP1_31-60 and RBA detected LV antibodies correlated with insulin autoantibodies and HLA-DQ8 suggesting possible role in type 1 diabetes. It remains to be determined if cross-reactivity or concomitant exposure to LV and HPeV3 contributes to the seroprevalence. J. Med. Virol. © 2015 Wiley Periodicals, Inc

    Identification of cofragmented combinatorial peptide isomers by two-dimensional partial covariance mass spectrometry

    Get PDF
    Combinatorial post-translational modifications (PTMs), such as those forming the so-called “histone code”, have been linked to cell differentiation, embryonic development, cellular reprogramming, aging, cancers, neurodegenerative disorders, etc. Nevertheless, a reliable mass spectral analysis of the combinatorial isomers represents a considerable challenge. The difficulty stems from the incompleteness of information that could be generated by the standard MS to differentiate cofragmented isomeric sequences in their naturally occurring mixtures based on the fragment mass-to-charge ratio and relative abundance information only. Here we show that fragment–fragment correlations revealed by two-dimensional partial covariance mass spectrometry (2D-PC-MS) allow one to solve the combinatorial PTM puzzles that cannot be tackled by the standard MS as a matter of principle. We introduce 2D-PC-MS marker ion correlation approach and demonstrate experimentally that it can provide the missing information enabling identification of cofragmentated combinatorially modified isomers. Our in silico study shows that the marker ion correlations can be used to unambiguously identify 5 times more cofragmented combinatorially acetylated tryptic peptides and 3 times more combinatorially modified Glu-C peptides of human histones than is possible using standard MS methods

    Association of Inventory to Measure and Assess imaGe Disturbance - Head and Neck Scores With Clinically Meaningful Body Image-Related Distress Among Head and Neck Cancer Survivors

    Get PDF
    Objective: The Inventory to Measure and Assess imaGe disturbance - Head and Neck (IMAGE-HN) is a validated patient-reported outcome measure of head and neck cancer-related body image-related distress (BID). However, the IMAGE-HN score corresponding to clinically relevant BID is unknown. The study objective is to determine the IMAGE-HN cutoff score that identifies head and neck cancer patients with clinically relevant BID. Methods: We conducted a cross-sectional study at six academic medical centers. Individuals ≥18 years old with a history of head and neck cancer treated with definitive intent were included. The primary outcome measure was the IMAGE-HN. A Receiver Operating Characteristic curve analysis was performed to identify the IMAGE-HN score that maximized sensitivity and specificity relative to a Body Image Scale score of ≥10 (which indicates clinically relevant BID in a general oncology population). To confirm the validity of the IMAGE-HN cutoff score, we compared the severity of depressive [Patient Health Questionnaire-9 (PHQ-9)] and anxiety symptoms [Generalized Anxiety Disorder-7 (GAD-7)], and quality of life [University of Washington-QOL (UW-QOL)] in patients with IMAGE-HN scores above and below the cutoff. Results: Of the 250 patients, 70.4% were male and the mean age was 62.3 years. An IMAGE-HN score of ≥22 was the optimal cutoff score relative to a Body Image Scale score of ≥10 and represents a clinically relevant level of head and neck cancer-related BID. Relative to those with an IMAGE-HN score of \u3c22, patients with IMAGE-HN scores of ≥22 had a clinically meaningful increase in symptoms of depression (mean PHQ-9 score difference = 5.8) and anxiety (mean GAD-7 score difference = 4.1) as well as worse physical (mean UW-QOL score difference = 18.9) and social-emotional QOL (mean UW-QOL score difference = 21.5). Using an IMAGE-HN cutoff score ≥22, 28% of patients had clinically relevant BID. Conclusion: An IMAGE-HN score of ≥22 identifies patients with clinically relevant head and neck cancer-related BID. This score may be used to detect patients who could benefit from strategies to manage their distress, select patients for studies evaluating interventions to manage head and neck cancer-related BID, and improve our understanding of the underlying epidemiology of the disorder

    Targeted proteomic quantitation of NRF2 signaling and predictive biomarkers in HNSCC

    Get PDF
    The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min

    Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis

    Get PDF
    Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and macrophages. This article reviews the data for the role of CysLTs as multi-functional mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue, (3) CysLTs are increased in patients with AR and are released following allergen exposure, (4) administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-regulation between CysLTs and a variety of other inflammatory mediators exists.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75432/1/j.1365-2222.2006.02498.x.pd

    Diagnostic tools in Rhinology EAACI position paper

    Get PDF
    This EAACI Task Force document aims at providing the readers with a comprehensive and complete overview of the currently available tools for diagnosis of nasal and sino-nasal disease. We have tried to logically order the different important issues related to history taking, clinical examination and additional investigative tools for evaluation of the severity of sinonasal disease into a consensus document. A panel of European experts in the field of Rhinology has contributed to this consensus document on Diagnostic Tools in Rhinology
    corecore