320 research outputs found

    Reply to Smith: On distinguishing between models, hypotheses, and theoretical frameworks

    Get PDF

    Reply to Zeder: Maintaining a diverse scientific toolkit is not an act of faith

    Get PDF

    Particularism and the retreat from theory in the archaeology of agricultural origins

    Get PDF
    The introduction of new analytic methods and expansion of research into previously untapped regions have greatly increased the scale and resolution of data relevant to the origins of agriculture (OA). As a result, the recognition of varied historical pathways to agriculture and the continuum of management strategies have complicated the search for general explanations for the transition to food production. In this environment, higher-level theoretical frameworks are sometimes rejected on the grounds that they force conclusions that are incompatible with real-world variability. Some of those who take this position argue instead that OA should be explained in terms of local and historically contingent factors. This retreat from theory in favor of particularism is based on the faulty beliefs that complex phenomena such as agricultural origins demand equally complex explanations and that explanation is possible in the absence of theoretically based assumptions. The same scholars who are suspicious of generalization are reluctant to embrace evolutionary approaches to human behavior on the grounds that they are ahistorical, overly simplistic, and dismissive of agency and intent.We argue that these criticisms are misplaced and explain why a coherent theory of human behavior that acknowledges its evolutionary history is essential to advancing understanding of OA. Continued progress depends on the integration of human behavior and culture into the emerging synthesis of evolutionary developmental biology that informs contemporary research into plant and animal domestication

    Recovering Dietary Information from Extant and Extinct Primates Using Plant Microremains

    Get PDF
    When reconstructing the diets of primates, researchers often rely on several well established methods, such as direct observation, studies of discarded plant parts, and analysis of macrobotanical remains in fecal matter. Most of these studies can be performed only on living primate groups, however, and the diets of extinct, subfossil, and fossil groups are known only from proxy methods. Plant microremains, tiny plant structures with distinctive morphologies, can record the exact plant foods that an individual consumed. They can be recovered from recently deceased and fossil primate samples, and can also be used to supplement traditional dietary analyses in living groups. Here I briefly introduce plant microremains, provide examples of how they have been successfully used to reconstruct the diets of humans and other species, and describe methods for their application in studies of primate dietary ecology

    Teosinte Inflorescence Phytolith Assemblages Mirror Zea Taxonomy

    Get PDF
    Molecular DNA analyses of the New World grass (Poaceae) genus Zea, comprising five species, has resolved taxonomic issues including the most likely teosinte progenitor (Zea mays ssp. parviglumis) of maize (Zea mays ssp. mays). However, archaeologically, little is known about the use of teosinte by humans both prior to and after the domestication of maize. One potential line of evidence to explore these relationships is opaline phytoliths produced in teosinte fruit cases. Here we use multidimensional scaling and multiple discriminant analyses to determine if rondel phytolith assemblages from teosinte fruitcases reflect teosinte taxonomy. Our results indicate that rondel phytolith assemblages from the various taxa, including subspecies, can be statistically discriminated. This indicates that it will be possible to investigate the archaeological histories of teosinte use pending the recovery of appropriate samples

    Pollen and Phytoliths from Fired Ancient Potsherds as Potential Indicators for Deciphering Past Vegetation and Climate in Turpan, Xinjiang, NW China

    Get PDF
    It is demonstrated that palynomorphs can occur in fired ancient potsherds when the firing temperature was under 350°C. Pollen and phytoliths recovered from incompletely fired and fully fired potsherds (ca. 2700 yrs BP) from the Yanghai Tombs, Turpan, Xinjiang, NW China can be used as potential indicators for reconstructing past vegetation and corresponding climate in the area. The results show a higher rate of recovery of pollen and phytoliths from incompletely fired potsherds than from fully fired ones. Charred phytoliths recovered from both fully fired and incompletely fired potsherds prove that degree and condition of firing result in a permanent change in phytolith color. The palynological data, together with previous data of macrobotanical remains from the Yanghai Tombs, suggest that temperate vegetation and arid climatic conditions dominated in the area ca. 2700 yrs BP
    corecore