612,285 research outputs found

    Pipeline AER arbitration with event aging

    Get PDF
    We present a simple circuit to handle communication between cells of neuromorphic arrays. It allows cells to operate continuously without waiting for acknowledgement signals back from the AER (Address Event Representation) arbitration circuitry. The module also implements aging of cell petitions i.e., old petitions to access to the AER bus are automatically discarded to give priority to the more recent ones and alleviate the bus congestion. The new arbitration scheme has been implemented and tested. A particular application scenario with an image sensor with spiking pixels that sense light continuously is explained. The sensing errors per event due to discontinued pixel operation can be minimized a factor 8.1. Experimental data obtained with real visual scenes are provided.Universidad de Cádiz PR2016-072Ministerio de Economía y Competitividad TEC2015-66878- C3-1-RJunta de Andalucía TIC 2012-2338Office of Naval Research (USA) N00014141035

    Pipeline Programs

    Get PDF
    Pipeline programs are designed to prepare and inspire students to pursue careers in medicine and medical research. SKMC is committed to providing experiences and education to middle school, high school, college, and graduate students from groups underrepresented in the health care fields to increase the pool of qualified candidates applying to careers related to medicine and medical research. Our programs: The Jefferson STEP-UP Medicine Program Future Health Professions Program (FHPP

    Floatation of Buried Submarine Pipeline under Cyclic Loading of Water Pressure -Numerical and Experimental Studies-

    Get PDF
    A dynamic response of a submarine pipeline buried in sandy seabed sediments to water loading generated by harmonically oscillating water-table vertical movements is examined in the present report experimentally and numerically. The aim of small-scale laboratory experiments was: (1) to record time-histories of pipeline vertical displacements, and (2) to observe a shape of slip surface of an overburden sand body involved in breakout together with the pipeline. A parametric study was carried out in order to investigate the influence of two meaningful factors, that is the depth of burial and the specific gravity of pipeline, on a gradual upward displacement of the pipeline. Based on a numerical finite-element 2D-analysis of the hydrodynamic pore pressure and effective stresses oscillations in the pipeline vicinity, an analysis of the pipeline stability potential is presented, in which all the experimental cases tested are verified. All important component forces (e.g., hydrodynamic uplift force) associated with floatation phenomenon of the buried submarine pipeline are considered and quantified

    The accessibility and scalability of gene family analysis

    Get PDF
    Gene family detection allows us to gain a better understanding of how different genomes are related. At UNH, we have a pipeline that computes these families using a variety of methods. However, the pipeline is inefficient, and performs poorly on large numbers of genornes. The pipeline is comprised of many Pert scripts, which are complex to use, and require specific organization of the data at each step. This means that all users of the pipeline must undergo training to understand each step of the pipeline and the intricacies of each script. The goal of my thesis is two-fold. First, I have optimized the scripts used in determining the gene families. This allows users to run gene family analysis on any number of genomes, without using excessive amounts of memory. My second step was to create a web interface for the pipeline. Each user is given an account that they can use to create pipeline projects. Within a project, users can simply upload their data, create the jobs they wish to run, and the web interface takes care of all the details. The server structures their data in the correct form, and the pipeline scripts are run automatically. The results are produced in an easy to understand format, and can be downloaded by the users. We have taken this interface, and have created a machine image containing all the tools needed to run the pipeline, and have made it available publicly on the Amazon Elastic Compute Cloud

    ORAC-DR: A generic data reduction pipeline infrastructure

    Get PDF
    ORAC-DR is a general purpose data reduction pipeline system designed to be instrument and observatory agnostic. The pipeline works with instruments as varied as infrared integral field units, imaging arrays and spectrographs, and sub-millimeter heterodyne arrays & continuum cameras. This paper describes the architecture of the pipeline system and the implementation of the core infrastructure. We finish by discussing the lessons learned since the initial deployment of the pipeline system in the late 1990s.Comment: 11 pages, 1 figure, accepted for publication in Astronomy and Computin

    The Hyper Suprime-Cam Software Pipeline

    Full text link
    In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescope's Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope's Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high level processing steps that generate coadded images and science-ready catalogs as well as low-level detrending and image characterizations.Comment: 39 pages, 21 figures, 2 tables. Submitted to Publications of the Astronomical Society of Japa

    SSTRED: A data-processing and metadata-generating pipeline for CHROMIS and CRISP

    Full text link
    We present a data pipeline for the newly installed SST/CHROMIS imaging spectrometer, as well as for the older SST/CRISP spectropolarimeter. The aim is to provide observers with a user-friendly data pipeline, that delivers science-ready data with the metadata needed for archival. We generalized the CRISPRED data pipeline for multiple instruments and added metadata according to recommendations worked out as part of the SOLARNET project. We made improvements to several steps in the pipeline, including the MOMFBD image restoration. A part of that is a new fork of the MOMFBD program called REDUX, with several new features that are needed in the new pipeline. The CRISPEX data viewer has been updated to accommodate data cubes stored in this format. The pipeline code, as well as REDUX and CRISPEX are all freely available through git repositories or web download. We derive expressions for combining statistics of individual frames into statistics for a set of frames. We define a new extension to the World Coordinate System, that allow us to specify cavity errors as distortions to the spectral coordinate.Comment: Draf

    Automating biomedical data science through tree-based pipeline optimization

    Full text link
    Over the past decade, data science and machine learning has grown from a mysterious art form to a staple tool across a variety of fields in academia, business, and government. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement a Tree-based Pipeline Optimization Tool (TPOT) and demonstrate its effectiveness on a series of simulated and real-world genetic data sets. In particular, we show that TPOT can build machine learning pipelines that achieve competitive classification accuracy and discover novel pipeline operators---such as synthetic feature constructors---that significantly improve classification accuracy on these data sets. We also highlight the current challenges to pipeline optimization, such as the tendency to produce pipelines that overfit the data, and suggest future research paths to overcome these challenges. As such, this work represents an early step toward fully automating machine learning pipeline design.Comment: 16 pages, 5 figures, to appear in EvoBIO 2016 proceeding

    Measuring Transit Signal Recovery in the Kepler Pipeline. III. Completeness of the Q1-Q17 DR24 Planet Candidate Catalogue, with Important Caveats for Occurrence Rate Calculations

    Get PDF
    With each new version of the Kepler pipeline and resulting planet candidate catalogue, an updated measurement of the underlying planet population can only be recovered with an corresponding measurement of the Kepler pipeline detection efficiency. Here, we present measurements of the sensitivity of the pipeline (version 9.2) used to generate the Q1-Q17 DR24 planet candidate catalog (Coughlin et al. 2016). We measure this by injecting simulated transiting planets into the pixel-level data of 159,013 targets across the entire Kepler focal plane, and examining the recovery rate. Unlike previous versions of the Kepler pipeline, we find a strong period dependence in the measured detection efficiency, with longer (>40 day) periods having a significantly lower detectability than shorter periods, introduced in part by an incorrectly implemented veto. Consequently, the sensitivity of the 9.2 pipeline cannot be cast as a simple one-dimensional function of the signal strength of the candidate planet signal as was possible for previous versions of the pipeline. We report on the implications for occurrence rate calculations based on the Q1-Q17 DR24 planet candidate catalog and offer important caveats and recommendations for performing such calculations. As before, we make available the entire table of injected planet parameters and whether they were recovered by the pipeline, enabling readers to derive the pipeline detection sensitivity in the planet and/or stellar parameter space of their choice.Comment: 8 pages, 5 figures, full electronic version of Table 1 available at the NASA Exoplanet Archive; accepted by ApJ May 2nd, 201

    Power Dynamics of the Dakota Access Pipeline Protests: An Environmental Justice Analysis

    Get PDF
    The Dakota Access Pipeline and the events of the accompanying protests are contemporary examples of environmental injustice, with the Standing Rock Nation facing a majority of the injustice. Analyzing Sioux history, the pipeline\u27s previous routes, and the police and state responses to the protectors , I propose that the Dakota Access Pipeline is a form of distributive, procedural, and substantive injustice
    corecore