61 research outputs found

    Protein markers for insulin-producing beta cells with higher glucose sensitivity

    Get PDF
    Background and Methodology: Pancreatic beta cells show intercellular differences in their metabolic glucose sensitivity and associated activation of insulin production. To identify protein markers for these variations in functional glucose sensitivity, rat beta cell subpopulations were flow-sorted for their level of glucose-induced NAD(P) H and their proteomes were quantified by label-free data independent alternate scanning LC-MS. Beta cell-selective proteins were also identified through comparison with rat brain and liver tissue and with purified islet alpha cells, after geometrical normalization using 6 stably expressed reference proteins. Principal Findings: All tissues combined, 943 proteins were reliably quantified. In beta cells, 93 out of 467 quantifiable proteins were uniquely detected in this cell type; several other proteins presented a high molar abundance in beta cells. The proteome of the beta cell subpopulation with high metabolic and biosynthetic responsiveness to 7.5 mM glucose was characterized by (i) an on average 50% higher expression of protein biosynthesis regulators such as 40S and 60S ribosomal constituents, NADPH-dependent protein folding factors and translation elongation factors; (ii) 50% higher levels of enzymes involved in glycolysis and in the cytosolic arm of the malate/aspartate-NADH-shuttle. No differences were noticed in mitochondrial enzymes of the Krebs cycle, beta-oxidation or respiratory chain. Conclusions: Quantification of subtle variations in the proteome using alternate scanning LC-MS shows that beta cell metabolic glucose responsiveness is mostly associated with higher levels of glycolytic but not of mitochondrial enzymes

    Plasticity of Adult Human Pancreatic Duct Cells by Neurogenin3-Mediated Reprogramming

    Get PDF
    AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes

    Clusters of Conserved Beta Cell Marker Genes for Assessment of Beta Cell Phenotype

    Get PDF
    The aim of this study was to establish a gene expression blueprint of pancreatic beta cells conserved from rodents to humans and to evaluate its applicability to assess shifts in the beta cell differentiated state. Genome-wide mRNA expression profiles of isolated beta cells were compared to those of a large panel of other tissue and cell types, and transcripts with beta cell-abundant and -selective expression were identified. Iteration of this analysis in mouse, rat and human tissues generated a panel of conserved beta cell biomarkers. This panel was then used to compare isolated versus laser capture microdissected beta cells, monitor adaptations of the beta cell phenotype to fasting, and retrieve possible conserved transcriptional regulators.Journal ArticleSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Susceptibility of Pancreatic Beta Cells to Fatty Acids Is Regulated by LXR/PPARα-Dependent Stearoyl-Coenzyme A Desaturase

    Get PDF
    Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARα-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRβ-/- and LXRαβ-/-), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARα agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARα agonists favors their desaturation and subsequent incorporation in neutral lipids

    Cellular Islet Autoimmunity Associates with Clinical Outcome of Islet Cell Transplantation

    Get PDF
    Islet cell transplantation can cure type 1 diabetes (T1D), but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function.Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG) induction and tacrolimus plus mycophenolate mofetil (MMF) maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively) and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively). Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome.In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular islet autoreactivity may be required. Monitoring cellular immune reactivity can be useful to identify factors influencing graft survival and to assess efficacy of immunosuppression.Clinicaltrials.gov NCT00623610

    Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation

    No full text
    Studies in Zucker diabetic fatty rats have led to the concept that chronically elevated free fatty acid (FFA) levels can cause apoptosis of triglyceride-laden pancreatic beta -cells as a result of the formation of ceramides, which induce nitric oxide (NO)-dependent cell death. This "lipotoxicity" hypothesis could explain development of type 2 diabetes in obesity. The present study examines whether prolonged exposure to FFA affects survival of isolated normal rat beta -cells and whether the outcome is related to the occurrence of triglyceride accumulation. A dose-dependent cytotoxicity was detected at 5-100 nmol/l of unbound oleate and palmitate, with necrosis occurring within 48 h and an additional apoptosis during the subsequent 6 days of culture. At equimolar concentrations, the cytotoxicity of palmitate was higher than that of oleate but lower than that of its nonmetabolized analog bromopalmitate. FFA cytotoxicity was not suppressed by etomoxir (an inhibitor of mitochondrial carnitine palmitoyltransferase I) or by antioxidants; it was not associated with inducible NO synthase expression or NO formation. An inverse correlation was observed between the percentage of dead beta -cells on day 8 and their cellular triglyceride content on day 2. For equimolar concentrations of the tested FFA, oleate caused the lowest beta -cell toxicity and the highest cytoplasmic triglyceride accumulation. On the other hand, oleate exerted the highest toxicity in islet non-beta -cells, where no FFA-induced triglyceride accumulation was detected. In conditions without triglyceride accumulation, the lower FFA concentrations caused primarily apoptosis, both in islet beta -cells and non-beta -cells. It is concluded that FFAs can cause death of normal rat islet cells through an NO-independent mechanism. The ability of normal beta -cells to form and accumulate cytoplasmic triglycerides might serve as a cytoprotective mechanism against FFA-induced apoptosis by preventing a cellular rise in toxic free fatty acyl moieties. It is conceivable that this potential is lost or insufficient in cells with a prolonged triglyceride accumulation as may occur in vivo

    Functional Beta Cell Mass from Device-Encapsulated hESC-Derived Pancreatic Endoderm Achieving Metabolic Control

    No full text
    Summary: Human stem cells represent a potential source for implants that replace the depleted functional beta cell mass (FBM) in diabetes patients. Human embryonic stem cell-derived pancreatic endoderm (hES-PE) can generate implants with glucose-responsive beta cells capable of reducing hyperglycemia in mice. This study with device-encapsulated hES-PE (4 × 106 cells/mouse) determines the biologic characteristics at which implants establish metabolic control during a 50-week follow-up. A metabolically adequate FBM was achieved by (1) formation of a sufficient beta cell number (>0.3 × 106/mouse) at >50% endocrine purity and (2) their maturation to a functional state comparable with human pancreatic beta cells, as judged by their secretory responses during perifusion, their content in typical secretory vesicles, and their nuclear NKX6.1-PDX1-MAFA co-expression. Assessment of FBM in implants and its correlation with in vivo metabolic markers will guide clinical translation of stem cell-derived grafts in diabetes. : In this article, Pipeleers and colleagues demonstrate that subcutaneous implants of device-encapsulated human stem cell-derived pancreatic endoderm can generate a functional beta cell mass that establishes sustained glucose control in mice. They identified their biologic characteristics and correlation with in vivo outcome. Data and methods are expected to guide clinical translation to beta cell replacement therapy in diabetes. Keywords: stem cell-derived pancreatic endoderm, stem cell therapy, diabetes, encapsulation, differentiation, functional maturation, functional beta cell mass, metabolic contro

    Glucagon-like peptide 1 receptor signaling influences topography of islet cells in mice

    No full text
    Glucagon-like peptide 1 (GLP-1) amplifies glucose-induced insulin release in vivo and in vitro. Activation of GLP-1 receptor (GLP-1R) signaling leads to differentiation of exocrine cells towards a beta -cell phenotype in vitro and stimulation of islet cell proliferation in vitro and in vivo, suggesting a potential role for GLP-1 in the modulation of islet growth and differentiation. To determine whether basal levels of GLP-1R signaling are essential for islet development, we examined islet cell composition and topography in GLP-1R-/- mice. Total beta -cell volume and number are not altered, but the topography of beta cells is markedly different in GLP-1R-/- mice compared with GLP-1R+/+ controls. The distribution of beta cells is shifted from large to small and medium-sized islets in the absence of GLP-1R signaling (large islets: 50 +/-3% in GLP-1R+/+ vs 28 +/-4% in GLP-1R-/-, P <0.01 and medium islets: 32 +/-2% in GLP-1R+/+ vs 48 +/-3% in GLP-1R-/-, P <0.001). Further morel GLP-1R-/- islets exhibit abnormalities in cell topography, with two to threefold more centrally located a cells detected in GLP-1R-/- islets. These alterations in alpha- and beta -cell topography indicate that basal levels of GLP-1 signaling in the normal rodent are involved in the normal cellular organization of the endocrine pancreas

    The stimulus-secretion coupling of glucose-induced insulin release XIX. The insulinotropic effect of glyceraldehyde.

    No full text
    Glyceraldehyde is known to stimulate insulin release. Its influence on various parameters of islet function was investigated in order to assess the possible significance of glycolsis in the insulinotropic action of glucose. In the absence of glucose, glyceraldehyde (5-20 mM), but neither dihydroxyacetone nor glycerol stimulated insulin release in rat isolated islets. The glucose-like effect glyceraldehyde (10 mM) was characterized by a shift to the left of the curve relating insulin release to glucose concentration, without any significant increase in the maximal velocity of the secretory process. In the isolated perfused rat pancreas, glyceraldehyde provoked a biphasic secretory response. Glyceraldehyde-induced insulin release was inhibited in the absence of calcium or in the presence of epinephrine, unaffected by mannoheptulose or 3,3-tetramethyleneglutaric acid, and enhanced by theophylline and cytochalism B. Glyceraldehyde also stimulated to pro-insulin biosynthesis and 45Ca net uptake by isolated islets, the latter effect being apparently due, in part at least, to inhibition of calcium outward transport across the cell membrane. At concentrations of nearly equivalent insulinotropic potency, glucose and glyceraldehyde were metabolized at rates yielding comparable output of both lactate and 14CO2. The data indicate that glyceraldehyde mimics many effects of glucose on islet function, suggesting that the insulinotropic action of glucose may be related to its metabolism through the glycolytic pathway.Journal Articleinfo:eu-repo/semantics/publishe
    • …
    corecore