34 research outputs found

    Chemotactic Cues for NOTCH1-Dependent Leukemia

    Get PDF
    The NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL. Leukemia patients often present with high-blood cell counts, diffuse disease with infiltration of the bone marrow, secondary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines are chemotactic cytokines that regulate migration of cells between tissues and the positioning and interactions of cells within tissue. Homeostatic chemokines and their receptors have been implicated in regulating organ-specific infiltration, but may also directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 axis has been implicated in the homing of leukemic cells into the gut, particularly in the presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we summarize the latest developments regarding the role of NOTCH signaling in regulating the chemotactic microenvironmental cues involved in the generation and progression of T-ALL and compare these findings to B-CLL

    A Novel t(8;14)(q24;q11) Rearranged Human Cell Line as a Model for Mechanistic and Drug Discovery Studies of NOTCH1-Independent Human T-Cell Leukemia

    Get PDF
    MYC-translocated T-lineage acute lymphoblastic leukemia (T-ALL) is a rare subgroup of T-ALL associated with CDKN2A/B deletions, PTEN inactivation, and absence of NOTCH1 or FBXW7 mutations. This subtype of T-ALL has been associated with induction failure and aggressive disease. Identification of drug targets and mechanistic insights for this disease are still limited. Here, we established a human NOTCH1-independent MYC-translocated T-ALL cell line that maintains the genetic and phenotypic characteristics of the parental leukemic clone at diagnosis. The University of Padua T-cell acute lymphoblastic leukemia 13 (UP-ALL13) cell line has all the main features of the above described MYC-translocated T-ALL. Interestingly, UP-ALL13 was found to harbor a heterozygous R882H DNMT3A mutation typically found in myeloid leukemia. Chromatin immunoprecipitation coupled with high-throughput sequencing for histone H3 lysine 27 (H3K27) acetylation revealed numerous putative super-enhancers near key transcription factors, including MYC, MYB, and LEF1. Marked cytotoxicity was found following bromodomain-containing protein 4 (BRD4) inhibition with AZD5153, suggesting a strict dependency of this particular subtype of T-ALL on the activity of super-enhancers. Altogether, this cell line may be a useful model system for dissecting the signaling pathways implicated in NOTCH1-independent T-ALL and for the screening of targeted anti-leukemia agents specific for this T-ALL subgroup

    Chemotactic Cues for NOTCH1-Dependent Leukemia

    No full text
    The NOTCH signaling pathway is a conserved signaling cascade that regulates many aspects of development and homeostasis in multiple organ systems. Aberrant activity of this signaling pathway is linked to the initiation and progression of several hematological malignancies, exemplified by T-cell acute lymphoblastic leukemia (T-ALL). Interestingly, frequent non-mutational activation of NOTCH1 signaling has recently been demonstrated in B-cell chronic lymphocytic leukemia (B-CLL), significantly extending the pathogenic significance of this pathway in B-CLL. Leukemia patients often present with high-blood cell counts, diffuse disease with infiltration of the bone marrow, secondary lymphoid organs, and diffusion to the central nervous system (CNS). Chemokines are chemotactic cytokines that regulate migration of cells between tissues and the positioning and interactions of cells within tissue. Homeostatic chemokines and their receptors have been implicated in regulating organ-specific infiltration, but may also directly and indirectly modulate tumor growth. Recently, oncogenic NOTCH1 has been shown to regulate infiltration of leukemic cells into the CNS hijacking the CC-chemokine ligand 19/CC-chemokine receptor 7 chemokine axis. In addition, a crucial role for the homing receptor axis CXC-chemokine ligand 12/CXC-chemokine receptor 4 has been demonstrated in leukemia maintenance and progression. Moreover, the CCL25/CCR9 axis has been implicated in the homing of leukemic cells into the gut, particularly in the presence of phosphatase and tensin homolog tumor suppressor loss. In this review, we summarize the latest developments regarding the role of NOTCH signaling in regulating the chemotactic microenvironmental cues involved in the generation and progression of T-ALL and compare these findings to B-CLL

    Aberrant Signaling Pathways in T-Cell Acute Lymphoblastic Leukemia

    Get PDF
    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease caused by the malignant transformation of immature progenitors primed towards T-cell development. Clinically, T-ALL patients present with diffuse infiltration of the bone marrow by immature T-cell blasts high blood cell counts, mediastinal involvement, and diffusion to the central nervous system. In the past decade, the genomic landscape of T-ALL has been the target of intense research. The identification of specific genomic alterations has contributed to identify strong oncogenic drivers and signaling pathways regulating leukemia growth. Notwithstanding, T-ALL patients are still treated with high-dose multiagent chemotherapy, potentially exposing these patients to considerable acute and long-term side effects. This review summarizes recent advances in our understanding of the signaling pathways relevant for the pathogenesis of T-ALL and the opportunities offered for targeted therapy

    C and CX3C chemokines: Cell sources and physiopathological implications

    No full text
    Within the fascinating world of chemokines, C and CX3C chemokines have long been regarded as two minor components, even though they present unique features and show less redundancy than the other chemokine families. Nevertheless, the body of data on their expression and role in various inflammatory disorders has grown in the past few years. The C chemokine family is represented by two chemokines, XCL1/lymphotactin-alpha and XCL2/lymphotactin-beta, whereas the CX3C chemokine family contains only one member, called CX3CL1/ fractalkine. In this review, we present an overview on the structure, expression and signaling properties of these chemokines and their respective receptors and examine how they contribute to inflammation and the regulation of leukocyte trafficking, as well as their potential role in the pathophysiology of human inflammatory diseases. Taken together, these data expand the biological importance of C and CX3C chemokines from that of simple immune modulators to a much broader biological role, even though their precise commitment within the framework of immune responses has still to be determined

    Insights on Metabolic Reprogramming and Its Therapeutic Potential in Acute Leukemia

    No full text
    Acute leukemias, classified as acute myeloid leukemia and acute lymphoblastic leukemia, represent the most prevalent hematologic tumors in adolescent and young adults. In recent years, new challenges have emerged in order to improve the clinical effectiveness of therapies already in use and reduce their side effects. In particular, in this scenario, metabolic reprogramming plays a key role in tumorigenesis and prognosis, and it contributes to the treatment outcome of acute leukemia. This review summarizes the latest findings regarding the most relevant metabolic pathways contributing to the continuous growth, redox homeostasis, and drug resistance of leukemia cells. We describe the main metabolic deregulations in acute leukemia and evidence vulnerabilities that could be exploited for targeted therapy

    Alternatively spliced forms of Ig alpha and Ig beta prevent B cell receptor expression on the cell surface

    No full text
    The B cell antigen receptor (BCR) includes an Igalpha/Igbeta heterodimer non-covalently associated with surface immunoglobulin. Recently, variant Igalpha and Igbeta transcripts, arising from alternative mRNA splicing, have been reported. The present study examined the function of the potential products of these transcripts, by utilizing cDNA expression plasmids to reconstitute human BCR expression in transfected 293T cells. Spliced transcripts produced truncated proteins (deltaIgalpha and deltaIgbeta), that failed to form heterodimers with their full-length counterparts, and did not mediate transport of IgM to the cell surface. When overexpressed, both deltaIgalpha and deltaIgbeta acted as competitors of Igalpha and Igbeta, leading to down-modulated surface IgM expression, and retention of IgM in the endoplasmic reticulum. These findings document a possible novel mechanism for controlling BCR expression in B cells, based on up-regulated synthesis of components devoid of transport function

    Calcineurin complex isolated from T-cell acute lymphoblastic leukemia (T-ALL) cells identifies new signaling pathways including mTOR/AKT/S6K whose inhibition synergize with Calcineurin inhibition to promote T-ALL cell death

    No full text
    Calcineurin (Cn) is a calcium activated protein phosphatase involved in many aspects of normal T cell physiology, however the role of Cn and/or its downstream targets in leukemogenesis are still ill-defined. In order to identify putative downstream targets/effectors involved in the pro-oncogenic activity of Cn in T-cell acute lymphoblastic leukemia (T-ALL) we used tandem affinity chromatography, followed by mass spectrometry to purify novel Cn-interacting partners. We found the Cn-interacting proteins to be part of numerous cellular signaling pathways including eIF2 signaling and mTOR signaling. Coherently, modulation of Cn activity in T-ALL cells determined alterations in the phosphorylation status of key molecules implicated in protein translation such as eIF-2\u3b1 and ribosomal protein S6. Joint targeting of PI3K-mTOR, eIF-2\u3b1 and 14-3-3 signaling pathways with Cn unveiled novel synergistic pro-apoptotic drug combinations. Further analysis disclosed that the synergistic interaction between PI3K-mTOR and Cn inhibitors was prevalently due to AKT inhibition. Finally, we showed that the synergistic pro-apoptotic response determined by jointly targeting AKT and Cn pathways was linked to down-modulation of key anti-apoptotic proteins including Mcl-1, Claspin and XIAP. In conclusion, we identify AKT inhibition as a novel promising drug combination to potentiate the pro-apoptotic effects of Cn inhibitors
    corecore