877 research outputs found

    Current-induced nuclear-spin activation in a two-dimensional electron gas

    Full text link
    Electrically detected nuclear magnetic resonance was studied in detail in a two-dimensional electron gas as a function of current bias and temperature. We show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps, can induce a re-entrant and even enhanced nuclear spin signal compared with the signal obtained under similar thermal equilibrium conditions at zero current bias. Our observations suggest that dynamic nuclear spin polarization by small current flow is possible in a two-dimensional electron gas, allowing for easy manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig

    Intrinsic Gap of the nu=5/2 Fractional Quantum Hall State

    Full text link
    The fractional quantum Hall effect is observed at low field, in a regime where the cyclotron energy is smaller than the Coulomb interaction. The nu=5/2 excitation gap is measured to be 262+/-15 mK at ~2.6 T, in good agreement with previous measurements performed on samples with similar mobility, but with electronic density larger by a factor of two. The role of disorder on the nu=5/2 gap is examined. Comparison between experiment and theory indicates that a large discrepancy remains for the intrinsic gap extrapolated from the infinite mobility (zero disorder) limit. In contrast, no such large discrepancy is found for the nu=1/3 Laughlin state. The observation of the nu=5/2 state in the low-field regime implies that inclusion of non-perturbative Landau level mixing may be necessary to better understand the energetics of half-filled fractional quantum hall liquids.Comment: 5 pages, 4 figures; typo corrected, comment expande

    Contrasting Behavior of the 5/2 and 7/3 Fractional Quantum Hall Effect in a Tilted Field

    Full text link
    Using a tilted field geometry, the effect of an in-plane magnetic field on the even denominator nu = 5/2 fractional quantum Hall state is studied. The energy gap of the nu = 5/2 state is found to collapse linearly with the in-plane magnetic field above ~0.5 T. In contrast, a strong enhancement of the gap is observed for the nu = 7/3 state. The radically distinct tilted-field behaviour between the two states is discussed in terms of Zeeman and magneto-orbital coupling within the context of the proposed Moore-Read pfaffian wavefunction for the 5/2 fractional quantum Hall effect

    Colossal magnetoresistance in an ultra-clean weakly interacting 2D Fermi liquid

    Full text link
    We report the observation of a new phenomenon of colossal magnetoresistance in a 40 nm wide GaAs quantum well in the presence of an external magnetic field applied parallel to the high-mobility 2D electron layer. In a strong magnetic field, the magnetoresistance is observed to increase by a factor of ~300 from 0 to 45T without the system undergoing any metal-insulator transition. We discuss how this colossal magnetoresistance effect cannot be attributed to the spin degree-of-freedom or localization physics, but most likely emanates from strong magneto-orbital coupling between the two-dimensional electron gas and the magnetic field. Our observation is consistent with a field-induced 2D-to-3D transition in the confined electronic system

    Single-shot, transverse self-wakefield reconstruction from screen images

    Full text link
    A single-shot method to reconstruct the transverse self-wakefields acting on a beam, based only on screen images, is introduced. By employing numerical optimization with certain approximations, a relatively high-dimensional parameter space is efficiently explored to determine the multipole components of the transverse-wakefield topology up to desired order. The reconstruction technique complements simulations, which are able to directly describe the wakefield composition based on experimental conditions. The technique is applied to representative simulation results as a benchmark, and also to experimental data on wakefield observations driven in dielectric-lined structures.Comment: 10 pages, 8 figure

    Generation of angular-momentum-dominated electron beams from a photoinjector

    Get PDF
    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam

    Magneto-optics of massive Dirac fermions in bulk Bi2Se3

    Full text link
    We report on magneto-optical studies of Bi2Se3, a representative member of the 3D topological insulator family. Its electronic states in bulk are shown to be well described by a simple Dirac-type Hamiltonian for massive particles with only two parameters: the fundamental bandgap and the band velocity. In a magnetic field, this model implies a unique property - spin splitting equal to twice the cyclotron energy: Es = 2Ec. This explains the extensive magneto-transport studies concluding a fortuitous degeneracy of the spin and orbital split Landau levels in this material. The Es = 2Ec match differentiates the massive Dirac electrons in bulk Bi2Se3 from those in quantum electrodynamics, for which Es = Ec always holds.Comment: 5 pages, 3 figures and Supplementary materials, to be published in Physical Review Letter
    • …
    corecore