256 research outputs found

    Physical Controls on Oxygen Distribution and Denitrification Potential in the North West Arabian Sea

    Get PDF
    At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6–12 to <2 μmol/kg−1) not represented in climatologies. Because of the nonlinearity between denitrification and oxygen concentration, resolutions of current Earth system models are too coarse to accurately estimate denitrification. We develop a novel physical proxy for oxygen from the glider data and use a high‐resolution physical model to show eddy stirring of oxygen across the Gulf of Oman. We use the model to investigate spatial and seasonal differences in the ratio of oxic and suboxic water across the Gulf of Oman and waters exported to the wider Arabian Sea

    Subsurface algal blooms of the northwestern Arabian Sea

    Get PDF
    In situ plankton sampling, combined with remotely sensed and ocean Seaglider observations, provided insight into the termination of the winter monsoon bloom and subsequent evolution into a subsurface fluorescence maximum in the northwestern Arabian Sea. This subsurface maximum gradually descended, presenting increased fluorescence between 25 and 55 m depth during the spring inter-monsoon season. Species diversity decreased by half within the deep fluorescence maximum relative to the bloom. The dinoflagellate Noctiluca scintillans dominated by biomass in all samples collected from the depth of the subsurface fluorescence maximum. We show that the subsurface algal bloom persists throughout inter-monsoon seasons, linking algal blooms initiated during the southwest and northeast monsoons. In situ samples showed a net decrease in Noctiluca cell size, illustrating a shift towards a deep chlorophyll maximum adapted community, but did not exhibit any increases in chlorophyll-containing endosymbionts. We propose that the plankton biomass and estimates of the northwestern Arabian Sea productivity are much greater than estimated previously through remote sensing observations, due to the persistence, intensity and vertical extent of the deep chlorophyll maximum which—using remote means—can only be estimated, but not measured
    corecore