30 research outputs found

    Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    Get PDF
    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space

    Nonsmooth Convex Optimization for Structured Illumination Microscopy Image Reconstruction

    No full text
    International audienceIn this paper, we propose a new approach for structured illumination microscopy image reconstruction. We first introduce the principles of this imaging modality and review its properties in various conditions. We then propose the minimization of nonsmooth convex functionals for the recovery of the unknown image and investigate several data–fitting and regularization terms in order to tackle reconstruction of noisy data. More specifically, we consider an original approach based on sparse local patch dictionaries for the regularization of the estimate. We demonstrate the good performance of the proposed approach on a test benchmark and perform some test experiments on images acquired on two different microscopes

    A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development.

    No full text
    International audienceThe generation of a precise number of neural cells and the determination of their laminar fate are tightly controlled processes during development of the cerebral cortex. Using genetic tracing in mice, we have identified a population of glutamatergic neurons generated by Dbx1-expressing progenitors at the pallial-subpallial boundary predominantly at embryonic day 12.5 (E12.5) and subsequent to Cajal-Retzius cells. We show that these neurons migrate tangentially to populate the cortical plate (CP) at all rostrocaudal and mediolateral levels by E14.5. At birth, they homogeneously populate cortical areas and represent <5% of cortical cells. However, they are distributed into neocortical layers according to their birthdates and express the corresponding markers of glutamatergic differentiation (Tbr1, ER81, Cux2, Ctip2). Notably, this population dies massively by apoptosis at the completion of corticogenesis and represents 50% of dying neurons in the postnatal day 0 cortex. Specific genetic ablation of these transient Dbx1-derived CP neurons leads to a 20% decrease in neocortical cell numbers in perinatal animals. Our results show that a previously unidentified transient population of glutamatergic neurons migrates from extraneocortical regions over long distance from their generation site and participates in neocortical radial growth in a non-cell-autonomous manner

    Microtubule-driven nuclear rotations promote meiotic chromosome dynamics

    No full text
    International audienceAt the onset of meiosis, each chromosome needs to find its homologue and pair to ensure proper segregation. In Drosophila, pairing occurs during the mitotic cycles preceding meiosis. Here we show that germ cell nuclei undergo marked movements during this developmental window. We demonstrate that microtubules and Dynein are driving nuclear rotations and are required for centromere pairing and clustering. We further found that Klaroid (SUN) and Klarsicht (KASH) co-localize with centromeres at the nuclear envelope and are required for proper chromosome motions and pairing. We identified Mud (NuMA in vertebrates) as co-localizing with centromeres, Klarsicht and Klaroid. Mud is also required to maintain the integrity of the nuclear envelope and for the correct assembly of the synaptonemal complex. Our findings reveal a mechanism for chromosome pairing in Drosophila, and indicate that microtubules, centrosomes and associated proteins play a crucial role in the dynamic organization of chromosomes inside the nucleus

    Mechanical Characterization of Murine Oocytes by Atomic Force Microscopy

    No full text
    International audienceThe quality of murine and human oocytes correlates to their mechanical properties, which are tightly regulated to reach the blastocyst stage after fertilization. Oocytes are nonadherent spherical cells with a diameter over 80 ÎĽm. Their mechanical properties have been studied in our lab and others using the micropipette aspiration technique, particularly to obtain the oocyte cortical tension. Micropipette aspiration is affordable but has a low throughput and induces cell-scale deformation. Here we present a step-by-step protocol to characterize the mechanical properties of oocytes using atomic force microscopy (AFM), which is minimally invasive and has a much higher throughput. We used electron microscopy grids to immobilize oocytes. This allowed us to obtain local and reproducible measurements of the cortical tension of murine oocytes during their meiotic divisions. Cortical tension values obtained by AFM are in agreement with the ones previously obtained by micropipette aspiration. Our protocol could help characterize the biophysical properties of oocytes or other types of large nonadherent samples in fundamental and medical research

    Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription

    Get PDF
    A new level of chromosome organization, topologically associating domains (TADs), was recently uncovered by chromosome conformation capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model\u27s predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation

    The last 59 amino acids of Smoothened cytoplasmic tail directly bind the protein kinase Fused and negatively regulate the Hedgehog pathway.

    Get PDF
    International audienceThe Hedgehog (HH) signaling pathway is crucial for the development of many organisms and its inappropriate activation is involved in numerous cancers. HH signal controls the traffic and activity of the seven-pass transmembrane protein Smoothened (SMO), leading to the transcriptional regulation of HH-responsive genes. In Drosophila, the intracellular transduction events following SMO activation depend on cytoplasmic multimeric complexes that include the Fused (FU) protein kinase. Here we show that the regulatory domain of FU physically interacts with the last 52 amino acids of SMO and that the two proteins colocalize in vivo to vesicles. The deletion of this region of SMO leads to a constitutive activation of SMO, promoting the ectopic transcription of HH target genes. This activation is partially dependent of FU activity. Thus, we identify a novel link between SMO and the cytoplasmic complex(es) and reveal a negative role of the SMO C-terminal region that interacts with FU. We propose that FU could act as a switch, activator in presence of HH signal or inhibitor in absence of HH
    corecore