432 research outputs found

    Meningitis complicated by subdural empyema and deafness caused by pneumoccoccal serotype 7F in a 17-month-old child: a case report

    Get PDF
    Despite the availability of effective antibacterial agents and vac- cines, pneumococcal meningitis and sepsis are still associated with high mortality rates and a high risk of neurological sequelae. We describe the case of a 17-month-old boy vaccinated with heptavalent pneumococcal conjugate vaccine (PCV7) who developed bacterial meningitis complicated by subdural empyema and deafness caused by Streptococcus pneumoniae serotype 7F. The 7F strain is not con- tained in PCV7 (the only vaccine on the market at the time of the onset of meningitis) but is included in the new pediatric 13-valent PCV, which may therefore prevent cases such as this in the future. The full article is free available on www.jpmh.or

    Reactive gamma-ketoaldehydes as novel activators of hepatic stellate cells in vitro

    Get PDF
    Aims: Products of lipid oxidation, such as 4-hydroxynonenal (4-HNE), are key activators of hepatic stellate cells (HSC) to a pro-fibrogenic phenotype. Isolevuglandins (IsoLG) are a family of acyclic γ-ketoaldehydes formed through oxidation of arachidonic acid or as by-products of the cyclooxygenase pathway. IsoLGs are highly reactive aldehydes which are efficient at forming protein adducts and cross-links at concentrations 100-fold lower than 4-hydroxynonenal. Since the contribution of IsoLGs to liver injury has not been studied, we synthesized 15-E2-IsoLG and used it to investigate whether IsoLG could induce activation of HSC. / Results: Primary human HSC were exposed to 15-E2-IsoLG for up to 48 hours. Exposure to 5 μM 15-E2-IsoLG in HSCs promoted cytotoxicity and apoptosis. At non-cytotoxic doses (50 pM-500 nM) 15-E2-IsoLG promoted HSC activation, indicated by increased expression of α-SMA, sustained activation of ERK and JNK signaling pathways, and increased mRNA and/or protein expression of cytokines and chemokines, which was blocked by inhibitors of JNK and NF-kB. In addition, IsoLG promoted formation of reactive oxygen species, and induced an early activation of ER stress, followed by autophagy. Inhibition of autophagy partially reduced the pro-inflammatory effects of IsoLG, suggesting that it might serve as a cytoprotective response. / Innovation: This study is the first to describe the biological effects of IsoLG in primary HSC, the main drivers of hepatic fibrosis. / Conclusions: IsoLGs represent a newly identified class of activators of HSC in vitro, which are biologically active at concentrations as low as 500 pM, and are particularly effective at promoting a pro-inflammatory response and autophagy

    Exact Solution of the Discrete (1+1)-dimensional RSOS Model with Field and Surface Interactions

    Full text link
    We present the solution of a linear Restricted Solid--on--Solid (RSOS) model in a field. Aside from the origins of this model in the context of describing the phase boundary in a magnet, interest also comes from more recent work on the steady state of non-equilibrium models of molecular motors. While similar to a previously solved (non-restricted) SOS model in its physical behaviour, mathematically the solution is more complex. Involving basic hypergeometric functions 3ϕ2{}_3\phi_2, it introduces a new form of solution to the lexicon of directed lattice path generating functions.Comment: 10 pages, 2 figure

    Hepatic wound repair

    Get PDF
    BACKGROUND: Human chronic liver diseases (CLDs) with different aetiologies rely on chronic activation of wound healing that represents the driving force for fibrogenesis progression (throughout defined patterns of fibrosis) to the end stage of cirrhosis and liver failure. ISSUES: Fibrogenesis progression has a major worldwide clinical impact due to the high number of patients affected by CLDs, increasing mortality rate, incidence of hepatocellular carcinoma and shortage of organ donors for liver transplantation. BASIC SCIENCE ADVANCES: Liver fibrogenesis is sustained by a heterogeneous population of profibrogenic hepatic myofibroblasts (MFs), the majority being positive for alpha smooth muscle actin (alphaSMA), that may originate from hepatic stellate cells and portal fibroblasts following a process of activation or from bone marrow-derived cells recruited to damaged liver and, in a method still disputed, by a process of epithelial to mesenchymal transition (EMT) involving cholangiocytes and hepatocytes. Recent experimental and clinical data have identified, at tissue, cellular and molecular level major profibrogenic mechanisms: (a) chronic activation of the wound-healing reaction, (b) oxidative stress and related reactive intermediates, and (c) derangement of epithelial-mesenchymal interactions. CLINICAL CARE RELEVANCE: Liver fibrosis may regress following specific therapeutic interventions able to downstage or, at least, stabilise fibrosis. In cirrhotic patients, this would lead to a reduction of portal hypertension and of the consequent clinical complications and to an overall improvement of liver function, thus extending the complication-free patient survival time and reducing the need for liver transplantation. CONCLUSION: Emerging mechanisms and concepts related to liver fibrogenesis may significantly contribute to clinical management of patients affected by CLDs

    AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro

    Get PDF
    Tumour stroma and microenvironment have been shown to affect hepatocellular carcinoma (HCC) growth, with activated hepatic stellate cells (HSC) as a major contributor in this process. Recent evidence suggests that the energy sensor adenosine monophosphate-activated kinase (AMPK) may mediate a series of essential processes during carcinogenesis and HCC progression. Here, we investigated the effect of different HCC cell lines with known TP53 or CTNBB1 mutations on primary human HSC activation, proliferation and AMPK activation. We show that conditioned media obtained from multiple HCC cell lines differently modulate human hHSC proliferation and hHSC AMPK activity in a paracrine manner. Pharmacological treatment of hHSC with AICAR and Compound C inhibited the HCC-induced proliferation/activation of hHSC through AMPK-dependent and AMPK-independent mechanisms, which was further confirmed using mouse embryonic fibroblasts (MEFs) deficient of both catalytic AMPKα isoforms (AMPKα1/α2-/-) and wild type (wt) MEF. Both compounds induced S-phase cell-cycle arrest and, in addition, AICAR inhibited the mTORC1 pathway by inhibiting phosphorylation of 4E-BP1 and S6 in hHSC and wt MEF. Datamining of the Cancer Genome Atlas (TCGA) and the Liver Cancer (LICA-FR) showed that AMPKα1 (PRKAA1) and AMPKα2 (PRKAA2) expression differed depending on the mutation (TP53 or CTNNB1), tumour grading and G1-G6 classification, reflecting the heterogeneity in human HCC. Overall, we provide evidence that AMPK modulating pharmacological agents negatively modulate HCC-induced hHSC activation and may therefore provide a novel approach to target the mutual, tumour-promoting interactions between hHSC and HCC

    Optimization and validation of a novel three-dimensional co-culture system in decellularized human liver scaffold for the study of liver fibrosis and cancer

    Get PDF
    The introduction of new preclinical models for in vitro drug discovery and testing based on 3D tissue-specific extracellular matrix (ECM) is very much awaited. This study was aimed at developing and validating a co-culture model using decellularized human liver 3D ECM scaffolds as a platform for anti-fibrotic and anti-cancer drug testing. Decellularized 3D scaffolds obtained from healthy and cirrhotic human livers were bioengineered with LX2 and HEPG2 as single and co-cultures for up to 13 days and validated as a new drug-testing platform. Pro-fibrogenic markers and cancer phenotypic gene/protein expression and secretion were differently affected when single and co-cultures were exposed to TGF-β1 with specific ECM-dependent effects. The anti-fibrotic efficacy of Sorafenib significantly reduced TGF-β1-induced pro-fibrogenic effects, which coincided with a downregulation of STAT3 phosphorylation. The anti-cancer efficacy of Regorafenib was significantly reduced in 3D bioengineered cells when compared to 2D cultures and dose-dependently associated with cell apoptosis by cleaved PARP-1 activation and P-STAT3 inhibition. Regorafenib re-versed TGF-β1-induced P-STAT3 and SHP-1 through induction of epithelial mesenchymal marker E-cadherin and downregulation of vimentin protein expression in both co-cultures engrafting healthy and cirrhotic 3D scaffolds. In their complex, the results of the study suggest that this newly proposed 3D co-culture platform is able to reproduce the natural physio-pathological microenvi-ronment and could be employed for anti-fibrotic and anti-HCC drug screening
    corecore