8 research outputs found

    CELLS v1.0 : updated and parallelized version of an electrical scheme to simulate multiple electrified clouds and flashes over large domains.

    Get PDF
    International audienceThe paper describes the fully parallelized electrical scheme CELLS which is suitable to simulate explicitly electrified storm systems on parallel computers. Our motivation here is to show that a cloud electricity scheme can be developed for use on large grids with complex terrain. Large computational domains are needed to perform real case meteorological simulations with many independent convective cells. The scheme computes the bulk electric charge attached to each cloud particle and hydrometeor. Positive and negative ions are also taken into account. Several parametrizations of the dominant non-inductive charging process are included and an inductive charging process as well. The electric field is obtained by inverting the Gauss equation with an extension to terrain-following coordinates. The new feature concerns the lightning flash scheme which is a simplified version of an older detailed sequential scheme. Flashes are composed of a bidirectional leader phase (vertical extension from the triggering point) and a phase obeying a fractal law (with horizontal extension on electrically charged zones). The originality of the scheme lies in the way the branching phase is treated to get a parallel code. The complete electrification scheme is tested for the 10 July 1996 STERAO case and for the 21 July 1998 EULINOX case. Flash characteristics are analysed in detail and additional sensitivity experiments are performed for the STERAO case. Although the simulations were run for flat terrain conditions, they show that the model behaves well on multiprocessor computers. This opens a wide area of application for this electrical scheme with the next objective of running real meterological case on large domains

    Regional lightning NOx sources during the TROCCINOX experiment

    Get PDF
    A lightning NOx (LiNOx) source has been implemented in the deep convection scheme of the Meso-NH mesoscale model following a mass-flux formalism coherent with the transport and scavenging of gases inside the convective scheme. In this approach the vertical transport of NO inside clouds is calculated by the parameterization of deep convective transport, thus eliminating the need for apriori LiNOx profiles. Once produced inside the convective column, NO molecules are redistributed by updrafts and downdrafts and detrained in the environment when the conditions are favorable. The model was applied to three particular flights during the Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX) campaign over the tropical area around Bauru on 3-4 March 2004. The convective activity during the three flights was investigated using brightness temperature at 10.7ÎŒm observed from GOES-12 satellite. The use of a model-to-satellite approach reveals that the simulation appears rather realistic compared to the observations. The diurnal cycle of the simulated brightness temperature, CAPE, number of IC flashes, NO entrainment flux are in phase, with a succession of three marked peaks at 18:00 UTC (15:00 LT). These simulated peaks precede the observed afternoon one by about three hours. Comparison of the simulated NOx with observations along the flight tracks show that the model reproduces well the observed NOx levels when the LiNOx source is applied. The budget of entrainment, detrainment and LiNOx convective fluxes shows that the majority of the NO detrained back to the environment comes from lightning source inside the convective columns. Entrainment of NO from the environment and vertical transport from the boundary layer were not significant during the episode. The troposphere is impacted by detrainment fluxes of LiNOx from 4 km altitude to 16 km with maximum values around 14 km altitude. Detrainment fluxes vary between 75 kg(N)/s during nighttime to 400 kg(N)/s at the times of maximun convective activity. Extrapolation of the regional LiNOx source would yield a global LiNOx production around 5.7 Tg(N)/year which is within the current estimates but should not hide the overestimation of the number of flash rates by the model

    Earth observation for land-atmosphere interaction science

    Get PDF
    The European Space Agency (ESA), iLEAPS (Inte-grated Land Ecosystem-Atmosphere Processes Study, i.e. the land-atmosphere core project of the International Geosphere-Biosphere Programme), and the European Geosciences Union (EGU) jointly organized the “Earth Observation for Land-Atmosphere Interaction Science” Conference, which took place from 3rd to 5th November 2010 at the Italian premises of ESA in Frascati (Rome). The event represented an attempt to effectively draw together Earth-observation (EO) and Earth-system scientists investigating land-atmosphere processes in order to better understand the current gaps in science and derive recommendations to advance in the use of EO technology in the context of this important topic. Around 200 people from more than 30 countries worldwide met and discussed for three intensive days. This paper reports keypoints and the main recommendations of the Symposium for each of the key Themes addressed during the Conference

    Tracing vertical transport by mesoscale convective systems over West Africa

    No full text
    International audienceCommunication about Tracing vertical transport by mesoscale convective systems over West Afric

    Evaluation of the AROME model's ability to represent ice crystal icing using in situ observations from the HAIC 2015 field campaign

    No full text
    International audienceSince pilots generally avoid intense convective areas, ice crystals icing (ICI) is an aeronautical weather incident that mainly occurs in the anvil of tropical deep convective clouds. Samples of favorable conditions for the occurrence of ICI and data from the High Altitude Ice Crystals (HAIC) 2015 field campaign in French Guiana are investigated and compared with simulations of the French operational mesoscale forecast system Application of Research to Operations at Mesoscales (AROME). To this end, a contextualization of convective systems into convective, stratiform, and cirriform regions is employed for both observations and AROME. General features of the microphysics of deep tropical convective systems are identified. The number concentration of crystals larger than 125 Όm and total water content (TWC) are strongly correlated at each temperature level, and both decrease with increasing distance from convective cores. AROME can reproduce the general behavior of the observed microphysics, especially TWC, but seems unable to simulate extreme ICI events. Reasons are sought in the assumptions performed in the microphysical scheme ICE3, and guidelines are proposed to enhance its skills in the context of ICI. In particular, the representation of the snow particle size distribution is adjusted across observations using a generalized gamma shape. This shape is found to outperform the usual Marshall–Palmer and gamma shapes. Additionally, a temperature and snow content dependence of generalized gamma parameters is found. These changes are found to significantly improve the snow concentration diagnostic of ICE3, and these modifications open the way for improvements in the ICE3 schem
    corecore