31 research outputs found

    Subresolution Displacements in Finite Difference Simulations of Ultrasound Propagation and Imaging

    Get PDF
    Time domain finite difference simulations are used extensively to simulate wave propagation. They approximate the wave field on a discrete domain with a grid spacing that is typically on the order of a tenth of a wavelength. The smallest displacements that can be modeled by this type of simulation are thus limited to discrete values that are integer multiples of the grid spacing. This paper presents a method to represent continuous and subresolution displacements by varying the impedance of individual elements in a multi-element scatterer. It is demonstrated that this method removes the limitations imposed by the discrete grid spacing by generating a continuum of displacements as measured by the backscattered signal. The method is first validated on an ideal perfect correlation case with a single scatterer. It is subsequently applied to a more complex case with a field of scatterers that model an acoustic radiation force induced displacement used in ultrasound elasticity imaging. A custom finite difference simulation tool is used to simulate propagation from ultrasound imaging pulses in the scatterer field. These simulated transmit-receive events are then beamformed into images which are tracked with a correlation based algorithm to determine the displacement. A linear predictive model is developed to analytically describe the relationship between element impedance and backscattered phase shift. The error between model and simulation is 位/1364, where 位 is the acoustical wavelength. An iterative method is also presented that reduces the simulation error to 位/5556 over one iteration. The proposed technique therefore offers a computationally efficient method to model continuous subresolution displacements of a scattering medium in ultrasound imaging. This method has applications that include ultrasound elastography, blood flow, and motion tracking. This method also extends generally to finite difference simulations of wave propagation, such as electromagnetic or seismic waves

    Spatial coherence in human tissue: implications for imaging and measurement

    Get PDF
    The spatial coherence properties of the signal backscattered by human tissue and measured by an ultrasound transducer array are investigated. Fourier acoustics are used to describe the propagation of ultrasound through a model of tissue that includes reverberation and random scatterering in the imaging plane. The theoretical development describes how the near-field tissue layer, transducer aperture properties, and reflectivity function at the focus reduce the spatial coherence of the imaging wave measured at the transducer surface. Simulations are used to propagate the acoustic field through a histologically characterized sample of the human abdomen and to validate the theoretical predictions. In vivo measurements performed with a diagnostic ultrasound scanner demonstrate that simulations and theory closely match the measured spatial coherence characteristics in the human body across the transducer array鈥檚 entire spatial extent. The theoretical framework and simulations are then used to describe the physics of spatial coherence imaging, a type of ultrasound imaging that measures coherence properties instead of echo brightness. The same echo data from an F/2 transducer was used to generate B-mode and short lag spatial coherence images. For an anechoic lesion at the focus the contrast to noise ratio is 1.21 for conventional B-mode imaging and 1.95 for spatial coherence imaging. It is shown that the contrast in spatial coherence imaging depends on the properties of the near-field tissue layer and the backscattering function in the focal plane

    3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound

    Get PDF
    Angiogenesis has been known as a hallmark of solid tumor cancers for decades, yet ultrasound has been limited in its ability to detect the microvascular changes associated with malignancy. Here, we demonstrate the potential of 'ultrasound localization microscopy' applied volumetrically in combination with quantitative analysis of microvascular morphology, as an approach to overcome this limitation. This pilot study demonstrates our ability to image complex microvascular patterns associated with tumor angiogenesis in-vivo at a resolution of tens of microns - substantially better than the diffraction limit of traditional clinical ultrasound, yet using an 8 MHz clinical ultrasound probe. Furthermore, it is observed that data from healthy and tumor-bearing tissue exhibit significant differences in microvascular pattern and density. Results suggests that with continued development of these novel technologies, ultrasound has the potential to detect biomarkers of cancer based on the microvascular 'fingerprint' of malignant angiogenesis rather than through imaging of blood flow dynamics or the tumor mass itself

    Blocked Elements in 1-D and 2-D Arrays鈥擯art I: Detection and Basic Compensation on Simulated and <italic>In Vivo</italic> Targets

    Get PDF
    During a transcostal ultrasound scan, ribs and other highly attenuating and/or reflective tissue structures can block parts of the array. Blocked elements tend to limit the acoustic window and impede visualization of structures of interest. Here, we demonstrate a method to detect blocked elements and we measure the loss of image quality they introduce in simulation and in vivo. We utilize a fullwave simulation tool and a clinical ultrasound scanner to obtain element signals from fully sampled matrix arrays during simulated and in vivo transcostal liver scans, respectively. The elements that were blocked by a rib showed lower average signal amplitude and lower average nearest-neighbor cross correlation than the elements in the remainder of the 2-D aperture. The growing receive-aperture B-mode images created from the element data indicate that the signals on blocked elements are dominated by noise and that turning them OFF has a potential to improve visibility of liver vasculature. Adding blocked elements to the growing receive apertures for five in vivo transcostal acquisitions resulted in average decrease in vessel contrast and contrast to noise ratio of 19% and 10%, respectively
    corecore