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Abstract

During a transcostal ultrasound scan, ribs and other highly attenuating and/or reflective tissue 

structures can block parts of the array. Blocked elements tend to limit the acoustic window and 

impede visualization of structures of interest. Here, we demonstrate a method to detect blocked 

elements and we measure the loss of image quality they introduce in simulation and in vivo. We 

utilize a fullwave simulation tool and a clinical ultrasound scanner to obtain element signals from 

fully sampled matrix arrays during simulated and in vivo transcostal liver scans, respectively. The 

elements that were blocked by a rib showed lower average signal amplitude and lower average 

nearest-neighbor cross correlation than the elements in the remainder of the 2-D aperture. The 

growing receive-aperture B-mode images created from the element data indicate that the signals 

on blocked elements are dominated by noise and that turning them OFF has a potential to improve 

visibility of liver vasculature. Adding blocked elements to the growing receive apertures for five in 
vivo transcostal acquisitions resulted in average decrease in vessel contrast and contrast to noise 

ratio of 19% and 10%, respectively.
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I. Introduction

When imaging with ultrasound through the chest wall, it is not uncommon for parts of the 

array to be positioned against the ribs, preventing them from effectively transmitting and/or 

receiving acoustic pulses [1]. Other structures, such as scar tissue or air in the lungs, can also 

introduce a high acoustic impedance mismatch and block array elements, or parts of them, 

during an ultrasound scan [2], [3]. Blocked elements tend to significantly degrade overall 

image quality, limit the acoustic window, and impede visualization of the structures of 

interest [4]. With the development of large-aperture, high-element-count, 2-D arrays and 

their potential use in transthoracic imaging, detecting and compensating for the blocked 

elements are becoming increasingly important. In this paper, we focus on ways to detect 

blocked elements and to measure their impact on visibility of anechoic and hypoechoic 

targets in vivo.

The system architecture of most clinical ultrasound scanners makes it difficult to assess the 

problem of blocked elements in vivo. Typically, the raw echoes from individual elements can 

be collected from a clinical system only through custom pulse sequencing, which is difficult 

to realize in real time due to limits on the internal memory size and data-transfer rates, and 

lack of access to proprietary information. In addition, in most high-element count 2-D 

arrays, signals from the individual elements are partially beamformed in the handle of the 

transducer [5] and are not accessible even through custom sequencing; this prevents 

complete and precise characterization of blocked parts of the array. To the best of our 

knowledge, there have been no in vivo attempts to characterize signals on the blocked 

elements and to measure image-degradation they introduce. Li et al. [4] and O’Donnell and 

Engeler [6] suggested estimation of the signal amplitude and standard deviation across the 

aperture to identify blocked elements as statistical outliers, but did not demonstrate results 

that would verify the proposed method.

Several groups [7]–[9] have developed methods to detect acoustic blockage using 

beamformed data. In [7], the edges of blocked parts of the field-of-view (FOV) are detected 

based on low coherence between beamsummed data from different subapertures. In [8], the 

lateral power spectrum at the focus is used to infer shape of the active aperture and the 

locations of acoustic obstacles. The methods in [7] and [8] are designed to provide guidance 

on probe positioning in order to increase the acoustic window. Ballard et al. [9] used 

echogenecity (integrated backscatter) to determine locations of ribs prior to applying 

adaptive compensation on a dual-mode (imaging plus therapy) array.

There have been several ex vivo studies aimed at understanding the mechanisms and extent 

of image degradation in transthoracic ultrasound. Notably, Hinkelman et al. [1] measured 

arrival-time and energy-level fluctuations across a mechanically scanned 2-D aperture for 

ultrasonic wavefronts that propagated through the extracted samples of human chest wall. 

The average rms values were 21.3 ns and 1.57 dB for the arrival-time and energy-level 

fluctuations, respectively. The receive 2-D apertures were windowed to minimize parts 

blocked by bone and to isolate distortions introduced by soft-tissue inhomogeneities; the 

above-reported results are thus clinically relevant only for intercostal imaging with small 

arrays.
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As a part of their transcostal, high-intensity, focused ultrasound (HIFU) feasibility study, 

Aubry et al. [10] measured distortions of the ultrasound beam transmitted through the ribs. 

In simulation and ex vivo experiments, they found that waves that propagated through bone 

had a pressure amplitude about six times lower than waves that propagated through soft 

tissue (in between the ribs). Compared with the control transmit beampattern measured in 

the absence of acoustic obstacles, the beampatterns associated with transrib imaging 

experienced a mean spreading in the main lobe half width of 1.25 mm and an increase in the 

sidelobe levels of up to 20 dB. However, the transducer used in the ex vivo study was 

designed for HIFU experiments (transmitting at 1 MHz with 200 elements, 8 mm in 

diameter each), so the extent of beam distortion in the diagnostic imaging domain remains 

unknown.

Simulation studies in [11] and [12] offer a more systematic analysis of intensity distributions 

at the focal plane of an HIFU transducer during transrib therapy. In particular, both studies 

assessed the appearance of secondary foci due to the periodic structure of the ribs, the 

phenomenon known as focus splitting. Khokhlova et al. [11] simulated propagation from a 

phased array containing 254 randomly distributed elements (7 mm in diameter each), and 

predicted that ribs can cause the appearance of anywhere between one and five focal 

maxima, depending on the ratio of sizes of intercostal spaces and ribs. The diameter of each 

focus is similar to the diameter of the focal spot in the absence of ribs. In addition, the 

absolute intensities in the focal plane are a function of the position of ribs relative to the 

transducer surface; the maximum focus amplitude is achieved when the beam area covered 

by ribs is minimal. These conclusions were reached using diffraction theory and pursuing 

both analytic and numerical approaches. In all cases, a strong agreement was achieved 

between these solutions and intensity measurements from an ex vivo setup.

Gélat et al. [12] also simulated the acoustic field due to a multielement HIFU array 

delivering therapy transcostally and intercostally. They used a boundary-element approach in 

combination with phase conjunction. The ribs were assumed to be perfect reflectors and the 

model did not account for nonlinear wave propagation, which is in odds with an HIFU 

therapy simulation in [11], where ribs were assumed to be perfect absorbers. Nevertheless, 

for a densely spaced rib configuration, the locations of the secondary foci compare well 

between the two studies. The studies in [10]–[12] were all aimed at ultrasound therapy, and 

did not address the effect of beam degradation (due to blocked elements) on visibility of 

distributed and anechoic targets.

In this paper, we detect blocked elements in fully sampled 2-D apertures, and turn them OFF 

to compensate for the loss of target visualization in simulated and in vivo transcostal liver 

scans. In particular, for the first time, a full-wave simulation tool and a commercial 3-D 

ultrasound system are utilized to demonstrate a method for detecting blocked elements based 

on the amplitude and cross correlation of their signals. From the simulated and in vivo data, 

we also reconstruct B-mode images of liver vasculature using receive apertures with 

different numbers of blocked elements. We expect that turning OFF blocked elements will 

reduce the amount of acoustic noise in the image and will improve vessel contrast and 

contrast to noise ratio (CNR). In the companion paper, we apply adaptive blocked-element 
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compensation schemes to large synthetic aperture data sets collected ex vivo, and we 

measure the resulting recovery of focus quality and the reduction of clutter levels.

II. Methods

A. Full-Wave Simulations

We simulated the received radio frequency signals from the individual elements from a fully 

sampled 2-D array while imaging the liver intercostally. We first created a 3-D acoustic map 

of parts of thorax and abdomen that would be captured in an intercostal liver scan, and then 

used full-wave code developed by Pinton et al. [13] to model wave propagation through the 

medium, including the effects of nonlinearity, attenuation, and multiple scattering 

(reverberation).

The 3-D acoustic map of tissue was built using the National Library of Medicine’s Visible 

Human data set, which provides high resolution registered optical, MRI, and CT scans of 

entire male and female bodies. Following the procedure outlined in [14], each structure in 

the region of interest was declared as one of the six tissue types (homogeneous, fat, muscle, 

connective, liver, or bone tissue) and assigned appropriate values for its acoustic properties 

(speed of sound, density, nonlinearity, and attenuation). Acoustic properties of each tissue 

type were determined from the data compiled by Goss et al. [15], [16] and are listed in Table 

I. While the reported speed of sound in bone is as high as 3000 m/s, a significantly lower 

value (800 m/s) was used in the simulation in order to reduce the temporal sampling 

frequency needed to capture wave propagation (through the bone). Because this was a 3-D 

simulation with a spatial grid of over 400 million points, it was important to keep the 

number of time steps, and also the computation time and amount of data, at reasonable 

levels. The bone density was set so that the acoustic impedance mismatch between bone and 

soft tissue remained similar as in real tissue. This ensured that the amount of energy 

reflected from the soft-tissue/bone interfaces, and therefore, the attenuation of signals 

received by the blocked elements was modeled correctly.

In order to simulate speckle generating targets, small local variations in speed of sound 

(average variation of 5% from the surrounding tissue) were introduced throughout the 

modeled medium. The resulting point scatterers had a 40 um diameter and were randomly 

distributed with average density of 12 scatterers per 3-D resolution volume.

To assess quality of a simulated transcostal liver scan, a spherical anechoic lesion was 

inserted in the liver tissue model. The lesion was created at 6-cm depth by eliminating all 

point scatterers within a 3.5-mm radius. In addition, a set of modified acoustic maps was 

created for a control case by replacing ribs with the surrounding connective tissue; the 

resulting maps were otherwise the same as their transcostal counterparts. To illustrate the 

geometry of the imaged medium, the orthogonal slices of the (3-D) speed-of-sound maps are 

shown in Fig. 1 for both transcostal and control cases.

Having specified the acoustic properties of the tissue, wave propagation was simulated for 

transcostal and control scans. In both cases, in order to reconstruct complete B-mode 

images, five transmit events were simulated across the medium in the direction along the 
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ribs (i.e., lateral dimension), similar to a diagnostic scanner operating in a linear imaging 

mode. The simulation code was run for each transmit event to numerically solve the full-

wave equation (via FDTD method) giving the full pressure field at all times. The grid 

spacing for the simulation was set at 15 points per wavelength (matched to 2.5 MHz), and 

the pressure field was computed at each point of the grid over 9000 time steps with a 

sampling period of 0.0267 us. Initial conditions for solving the equation were set by 

prescribing the transmit waveforms at the location of the 2-D aperture. Individual channel 

signals were obtained by sampling the pressure field at the face of the transducer and 

convolving it with the axial transducer impulse response. Specifically, the center frequency 

of transmitted waves was set at 2.5 MHz and the transducer impulse response was set to 

yield a fractional bandwidth of 0.5. The 2-D aperture extended 1.9 cm in lateral and 1.4 cm 

in elevation dimension, and was positioned so that roughly one half of it was blocked by ribs 

during the transcostal scan. Specifications of the modeled transducer are listed in Table II. 

The individual channel signals from each transmit event were used to beamform 50 receive 

lines to ensure sufficient sampling in the lateral dimension.

B. In Vivo Single-Channel Acquisition

To acquire element data in vivo, we developed custom acquisition sequences on a modified 

Siemens Acuson SC2000 scanner and 4z1c matrix array (Siemens Medical Solutions USA, 

Inc., Mountain View, CA). This high-element-count 2-D array has both a lateral pitch and an 

elevational pitch of 0.4 mm. Array elements are grouped in square subapertures that are 

beamformed in the handle of the transducer to supply 192 system channels. Throughout 

these papers, data from an individual channel, therefore, refer to the beamformed data within 

a square subaperture.

The complex data of the individual channels were collected using a full-synthetic receive 

sequence, as implemented in [17]. In this method, the full aperture was used to transmit 

focused waves while parallel receive beamforming was used to collect signals on 30 

channels per transmit event. Six transmits were fired per image line to collect data for 180 

channels at the volume rate of two volumes per second. The complex data collected for each 

channel was sampled at a rate of 2.5 MHz, which was sufficient to obtain high-resolution 

ultrasound images.

The individual-channel data needed to reconstruct complete B-mode volumes were acquired 

on the liver vasculature of five human volunteers, ages 29 to 59. Written consent was 

obtained from all participants, and the study protocol was approved by the Duke University 

Medical Center Institutional Review Board. The data were acquired using a transmit 

frequency of 2.5 MHz and over the FOV that spanned 38° in lateral and 19.2° in elevation. 

Livers were first imaged intercostally, so that parts of the 2-D aperture were blocked by the 

ribs. To obtain control data (with all the transducer elements free to transmit and receive 

pulses), the same vasculature was also imaged subcostally, away from the ribs. In both cases, 

the probe was angled so that the vasculature of interest was in the middle of the FOV. To 

minimize motion artifacts, the patients were asked to hold their breath and to remain still for 

the duration of each half-a-second acquisition.
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C. Detection of Blocked Elements and Basic Compensation

For simulated and in vivo data sets, the magnitude and the nearest-neighbors normalized 

cross correlation of the individual element signals were computed to detect blocked 

elements. Kernel of 1.2 mm (two wavelengths) was used to calculate cross-correlation 

values. The two quantities were averaged axially, over a 4-cm range centered around the 

transmit focus to reduce clutter-induced variance and to improve detection of blocked 

elements in the receive 2-D aperture. Elements were classified as blocked if their depth-

averaged amplitude was −8 dB or lower (compared with the maximum amplitude on the 2-D 

aperture), and if their nearest-neighbor normalized cross correlation was less than 0.5. The 

element signals with low amplitude and low nearest-neighbor normalized cross correlation 

are likely to be overwhelmed by noise, which can result in a loss of image quality and an 

inadequate visualization of the target.1 The specific cutoff values of amplitude and cross 

correlation were determined empirically by those levels that defined a clear boundary 

between the regions of blocked and nonblocked elements. For the simulated transcostal 

acquisition, these regions were also compared with the anticipated locations of blocked 

elements based on the position of the rib in the acoustic maps.

In order to assess the impact of blocked elements on image quality and the effectiveness of 

basic blocked-element compensation, a series of simulated and in vivo B-mode images was 

created from the growing receive apertures. For each in vivo transcostal acquisition, the 

direction of aperture growth was chosen to provide a clear transition from the nonblocked to 

the blocked part of the aperture. For the simulated transcostal scan, the receive aperture was 

grown in the opposite direction to include the signals from the blocked elements first, 

because the image quality from the corresponding control experiment was more sensitive to 

the change in aperture size at small apertures. The direction of aperture growth was 

restricted to a single dimension (lateral or elevation) to mimic behavior of a 1-D array with 

partially blocked elements. This procedure amounted to summing the 2-D aperture data 

coherently along one dimension of the array, and then growing the resulting synthetic-

receive, 1-D aperture in a manner as described by Bottenus et al. [18]. For the abdominal 

(and simulated control) data sets, the receive apertures were grown in the same direction as 

for the corresponding transcostal acquisitions.

The orientation and position of the reconstructed B-mode slices were the same for a given 

acquisition and were chosen to optimally capture hypoechoic structures of interest (lesions 

and liver vasculature). To compare image quality across the slices, the contrast and the CNR 

of these structures were calculated for each slice, according to the following equations:

(1)

1This point is demonstrated in the left B-mode image in Fig. 6, which was created using only the signals from the blocked elements in 
the simulated transcostal scan. The image is saturated with noise and the anechoic lesion at 6-cm depth cannot be observed.
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(2)

In (1) and (2), Si and So are the mean signal magnitudes of the regions inside and outside of 

a hypoechoic structure, respectively, and  and  are the corresponding signal variances.

III. Results

A. Individual Element Signals

The average amplitude and the average nearest-neighbor normalized cross correlation of the 

simulated element signals are shown in Fig. 2. The receive-element signals are characterized 

for the middle transmit (Tx) beam of the simulated transcostal scan, and for the matching 

control simulation, where the ribs are substituted with connective tissue properties. The 

amplitude and the nearest-neighbor cross correlation are averaged over 4 cm of depth around 

the transmit focus, where the cross-correlation values are expected to follow the Van-Cittert–

Zernike theorem [19]. For speckle signals corrupted by clutter, a large averaging range is 

necessary to reduce noise in the estimates of amplitude and the nearest-neighbor cross 

correlation. The two quantities are displayed across the receive (Rx) 2-D aperture using a 

linear grayscale map and the dynamic range of 0–1. For the control simulation [Fig. 2(a)], 

both quantities are relatively uniform across the array. For the transcostal simulation [Fig. 

2(b)], the top four rows of elements, which are positioned over the rib in Fig. 1, display 

lower amplitude and cross-correlation values than the rest of the aperture. While there is an 

agreement between the amplitude and cross-correlation images for both simulations, the 

cross-correlation image created from the transcostal scan displays sharper boundaries of the 

blocked region (of the aperture) than its corresponding amplitude image.

Examples of amplitude and cross correlation of the individual-element signals acquired from 

the in vivo liver are presented in Figs. 3 and 4. The images are created from a transcostal and 

abdominal data set, both acquired from the liver of a 59-year-old male. Fig. 3 displays the 

depth-averaged amplitude and cross correlation over the extent of 2-D apertures for both 

acquisitions, in a similar manner as Fig. 2. For the abdominal acquisition [Fig. 3(a)], the two 

quantities exhibit high uniformity over the entire surface of the array. For the transcostal 

acquisition [Fig. 3(b)], a region of dark pixels located in the bottom-right corner of both 

images clearly shows the extent of the blocked part of the aperture. Due to angled 

orientation of the rib with respect to edges of the array during the acquisition, the shape of 

the blocked region can be fully inferred only using a matrix array. Signals received on this 

part of the array have 8.4-dB lower average amplitude than the signals received on the 

remainder of elements.

In Fig. 4, the average element amplitude and the average nearest-neighbor cross correlation 

are shown as functions of the transmit beam direction (in the lateral plane) for a single row 

of elements on the aperture. For the abdominal acquisition [Fig. 4(a)], the images are 

uniform and display high values (close to 1), which indicates that no obstacles are 
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encountered in the acoustic path as the transmit beam is swept across the FOV. In the images 

reconstructed from the transcostal acquisition [Fig. 4(b)], a diagonal shape of the region of 

low values implies that the number blocked elements in the row of interest decreases as the 

Tx beam is steered away from the ribs.

B. Growing Aperture B-Mode Images

Visibility of anechoic and hypoechoic targets in the presence of blocked elements is assessed 

under two imaging scenarios. For the transcostal simulation, the rib is oriented along the 

lateral dimension of the transducer and the B-mode images are reconstructed for the receive 

aperture growing in the perpendicular (i.e., elevation) direction. This ensures that the lateral 

resolution is the same between the (growing aperture) images, which makes it possible to 

assess the potential loss of image quality due to noise on the blocked elements only. In the in 
vivo transcostal acquisitions, the orientation of the rib with respect to the array surface was 

difficult to control, and for a diagonal orientation, both noise level and the lateral resolution 

of the B-mode slices are affected during the receive aperture growth.

Examples of growing-aperture B-mode images of liver reconstructed from the control and 

transcostal simulations are shown in Figs. 5 and 6, respectively. The receive apertures are 

increased along the elevation dimension of the array and the images are shown at 33% and 

100% of the total physical aperture. Under each B-mode image from the transcostal 

simulation, the image of element amplitude from Fig. 3(a) is recreated and the locations of 

enabled receive elements are shaded in red. As the schematics show, the receive aperture 

grows to include the blocked elements first, and the nonblocked elements are gradually 

added afterward at larger aperture sizes. All images are log-compressed and displayed using 

a 60-dB dynamic range, except for the 33%-Rx-aperture image created from the transcostal 

simulation, which is displayed using an extended dynamic range (80 dB) to show attenuated 

signals at larger depths. In the 33%-Rx-aperture transcostal image, the region inside the 

lesion used to compute contrast and CNR is demarcated with white dashed lines.

The lesion is visible in all images displayed for the control simulation (Fig. 5). As the 

receive aperture grows in elevation, the slice thickness decreases and clutter inside the lesion 

is reduced. In the images created from the transcostal simulation (Fig. 6), the near-field 

region is brighter and the signals at larger depths are more attenuated than in the matching 

control scans. Furthermore, in the 33%-Rx-aperture transcostal image, which is beamformed 

almost exclusively using the signals from the blocked elements, the anechoic lesion at 6-cm 

depth cannot be observed. The lesion visibility improves as the signals from the nonblocked 

elements are included in the image.

Contrast and CNR of the anechoic lesions observed in Figs. 5 and 6 are plotted as functions 

of the receive-aperture size in Fig. 7. For the control simulation, both contrast and CNR 

increase gradually as the receive aperture grows reaching maxima of 15.9 dB and 1.58, 

respectively, at full aperture. For the transcostal simulation, the image quality metrics remain 

low as the images are beamformed using only blocked elements. Specifically, as the receive 

aperture grows to include 33% of the total array size, contrast and CNR for the transcostal 

simulation increase from 2.14 to 3.1 dB, and from 0.34 to 0.49, respectively. Following the 

same change in the receive aperture for the control simulations, lesion contrast and CNR 
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increase from 9.36 to 14 dB, and from 1.19 to 1.49, respectively. Lesion contrast and CNR 

(computed for the transcostal simulation) start to improve as the nonblocked elements are 

added to the aperture, reaching maxima of 14.8 dB and 1.42 at full receive aperture. These 

results indicate that the blocked-element signals are dominated by noise and do not 

significantly contribute to lesion visibility.

Sample B-mode images of in vivo liver vasculature reconstructed using receive apertures of 

different sizes are shown in Figs. 8 and 9. The images are created from the same pair of 

abdominal and transcostal acquisitions used to generate Figs. 3 and 4. To assess the 

effectiveness of basic blocked-element compensation, the images in each figure are beam-

formed using the upper 8%, 67%, and 100% of receive array elements, which for the 

transcostal acquisition implies that the smallest receive aperture contains the nonblocked 

elements only, and the blocked elements are added gradually at larger aperture sizes. The 

locations of receive elements used to create the transcostal B-mode scans are denoted in a 

similar manner as in Fig. 6, using the maps from Fig. 3(b). The angled orientation of the ribs 

for this acquisition means that the effective 2-D aperture cannot be described as two separate 

functions. The presented results for the aperture growth in elevation dimension are relevant 

to 1-D arrays with partially blocked elements, which are more common. The results for the 

aperture growth in the lateral dimension are similar and are omitted. All images are 

displayed on a decibel scale with the dynamic range chosen to optimally visualize the 

vasculature of interest for a given acquisition.

Fig. 8 shows selected images of different Rx-aperture sizes created from the abdominal 

acquisition. A blood vessel located at 7-cm depth at the center of the FOV is apparent for all 

three receive-aperture sizes. The image beamformed with only 8% of available receive 

elements is saturated with noise and the shape of the vessel cross section is not clearly 

conveyed. The image reconstructed using 67% of available receive elements shows 

significantly reduced noise and improved definition of vessel boundaries compared to its 

8%-aperture counterpart. The image beamformed using all receive elements indicates even 

further reduction of clutter inside of the vessel lumen.

Fig. 9 shows the in vivo images created from the transcostal acquisition, using the receive 

apertures of the same sizes as those used to create the images in Fig. 8. The image 

reconstructed using only the upper 8% of receive elements is overwhelmed with clutter and 

no hypoechoic structures can be identified. A large blood vessel can be observed at about 

11-cm depth at the right-hand side of FOV in the images reconstructed using 67% and 100% 

of the available receive aperture. The 67%-receive-aperture image is reconstructed with most 

of the blocked elements turned OFF and it displays clearer vessel lumen and more 

pronounced vessel walls compared with its full-Rx-aperture counterpart.

Contrast and CNR of the vessels observed in Figs. 8 and 9 are plotted over a range of 

receive-aperture sizes in Fig. 10. The image quality metrics obtained for each acquisition are 

plotted on separate graphs. Contrast and CNR values that correspond to the images in Figs. 8 

and 9 are denoted with circles, while the vertical dashed lines are used to indicate the 

aperture size at the maximum contrast/CNR for the transcostal acquisition.
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For the abdominal acquisition (Fig. 10), both contrast and CNR of the vessel increase as 

more elements are used to beamform the images, reaching maxima of 11.4 dB and 1.57, 

respectively, at full aperture. For the transcostal acquisition (Fig. 10), the image-quality 

metrics improve as the receive aperture grows (in elevation) until noisy signals from the 

blocked elements are introduced. The maximum values of contrast and CNR are 10 dB and 

1.46, respectively, and are both measured when (the upper) 66.7% of the available receive 

aperture is used to beamform an image. When the blocked elements are turned ON and 

included in image reconstruction, contrast and CNR decrease to 9 dB and 1.36, respectively.

Table III summarizes changes in contrast and CNR following the receive-aperture growth for 

the abdominal and transcostal acquisitions in all five subjects. Changes in image quality 

metrics are recorded over the region of blocked elements for the transcostal acquisitions, and 

over the same receive aperture sizes for the matching abdominal acquisitions. Similar trends 

are observed across the subjects. Adding signals from the blocked elements results in the 

mean drop in contrast of 19.2%, while the average drop in CNR (computed over the same 

changes in the receive apertures) is measured at 10%. Therefore, excluding signals from the 

blocked elements in the image has the potential to partially recover losses in contrast and 

CNR.

IV. Discussion

A. Detection of Blocked Elements

The simulation and in vivo results demonstrate that blocked elements can be detected based 

on low amplitude and cross-correlation values of their echoes. In this paper, the elements 

were declared as blocked if their average amplitude was −8 dB or lower (relative to the 

maximum element amplitude in the aperture), and if their average nearest-neighbor cross 

correlation was less than 0.5. For the simulated transcostal scan, blocked elements are 

detected in the top four rows of the 2-D aperture, as seen in the channel-amplitude and 

cross-correlation images in Fig. 2(b). The speed-of-sound maps in Fig. 1 show that this part 

of the aperture is located directly above the rib and is expected to be in its acoustic shadow. 

The validity of the blocked-element-detection method is further supported with the matching 

control simulation, where bone was assigned the acoustic properties of the surrounding 

connective tissue [Fig. 1(b)]. The resulting images of element amplitude and the nearest-

neighbor cross correlation are uniform and display high values across the elements [Fig. 

2(a)], which confirms the absence of acoustic obstacles and means that the blocked elements 

detected in the matching transcostal simulations are due to ribs only.

The images reconstructed from the in vivo acquisitions are consistent with the simulation 

results, and suggest that matrix arrays can improve detection of blocked elements compared 

to 1-D arrays. In the images of average element amplitude and average nearest-neighbor 

cross correlation reconstructed from a transcostal liver scan [Fig. 3(b)], a region of low 

values can be observed in the bottom-right corner, and is attributed to a rib blocking that part 

of the aperture. The shape of the blocked region suggests that sampling apertures along only 

one dimension would lead to blurring of the transition band (between blocked and 

nonblocked regions) making detection by thresholding more difficult. The images created 
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from the matching abdominal acquisition [Fig. 3(a)] display uniformity across the elements 

in the absence of an acoustic obstacle.

It is worth noting that the blocked elements were successfully detected using signals from 

speckle targets and in the presence of acoustic noise. The element signals from the simulated 

and in vivo transcostal acquisitions are corrupted by clutter as indicated in the corresponding 

B-mode images (Figs. 6 and 9). Nevertheless, the element amplitude and the nearest-

neighbor cross correlation in Figs. 2(b) and 3(b) show reduced noise after depth averaging (4 

cm around the Tx focus). This allows for a clear distinction between the blocked and 

nonblocked parts of the apertures.

B. Basic Blocked-Element Compensation on Anechoic and Hypoechoic Targets

Signals received on the blocked elements are dominated by noise, which degrades the 

visibility of anechoic/hypoechoic targets. For example, in the B-mode image that is created 

from the transcostal simulations and using the upper 33% of the receive aperture, the 

anechoic lesion at 6-cm depth is not visible (Fig. 6). As observed in the corresponding 

channel-amplitude and cross-correlation images [Fig. 2(b)], the receive aperture used to 

create this B-mode is comprised almost entirely of the blocked elements. On the other hand, 

the B-mode image created from the matching control simulations and using the same-size 

Rx aperture shows the lesion with a contrast of 9.36 dB and CNR of 1.19 (Figs. 6 and 7).

The B-mode images reconstructed from the in vivo acquisitions indicate that turning OFF 

blocked elements could improve visualization of the anechoic and hypoechoic targets. As 

observed in the B-mode images created from the transcostal acquisition in Fig. 9, when the 

blocked elements are added to the Rx aperture to increase its size from 66% to 100% (of the 

total array size), vessel contrast and CNR decrease from 10 to 9 dB, and from 1.46 to 1.36, 

respectively. In the matching abdominal acquisition, the vessel contrast and CNR increase 

monotonically with the receive aperture size (Fig. 8). Similar trends in vessel contrast/CNR 

were observed in the other four subjects for their respective transcostal and abdominal 

acquisitions (Table III). The loss of image quality associated with the in vivo transcostal 

acquisitions can be attributed to noise on the blocked elements and to decrease in the 

effective aperture size caused by diagonal orientation of the rib. In particular, comparing the 

right-hand plots in Fig. 10 to the amplitude and cross-correlation images in Fig. 3(b) 

suggests that when a majority of elements in a row are blocked, adding that row to the 

aperture will likely degrade image quality. When extended to 1-D arrays, this result implies 

that partially blocked elements with less than 50% of effective area should not be included in 

image reconstruction.

The aforementioned conclusions of the in vivo study are not affected by variations of 

contrast and CNR measurements across the patients. In particular, the large standard 

deviations in Table III can be attributed to the fact that the level of acoustic noise and overall 

image quality (both of which affect target visibility) is patient-dependent. In addition, for the 

transcostal acquisitions, the size and location of the blocked regions change with the Tx 

beam direction (as shown in the channel amplitude and cross-correlation images in Fig. 4); 

this kind of variation makes it more difficult to track incremental changes in vessel contrast 

and CNR in the presence of blocked elements. Nevertheless, the presented in vivo results 
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show a clear difference in trends in contrast/CNR between the transcostal and abdominal 

acquisitions. For both image quality metrics, the difference of the means of the two groups 

(i.e., abdominal and transcostal acquisitions) is larger than the sum of their respective 

standard deviations (Table III).

Simulation results support the conclusions drawn from the in vivo B-mode images despite 

the differences between the contrast/CNR curves for the control simulation (Fig. 7) and their 

counterparts for the in vivo abdominal acquisition [Fig. 10(a)]. Specifically, the B-mode 

images created from the control simulation do not show significant improvements in lesion 

visibility for larger receive apertures. This trend may be explained by imperfections in the 

tissue model employed in simulation. For example, all tissue structures used in the model are 

detected from photographs of tissue that have limited resolution [14], which in turn makes it 

difficult to determine reverberation caused by small inhomogeneities (in the subcutaneous 

tissue layer). If the reverberation is too strong, it can lead to a loss of signal coherence across 

the receive aperture and reduce improvements in target visibility with increasing aperture 

size. To circumvent the issue, the simulated control images created from the smaller Rx-

apertures (across which coherence is preserved) were compared to their transcostal 

counterparts that contained signals from the blocked elements only. In that case, the lesion 

contrast and CNR exhibit growth for the control case, and they remain low for the simulated 

transcostal scan contributing to the claim that the blocked elements carry noise and can 

degrade lesion visibility.

V. Conclusion

We have demonstrated a method to detect the array elements that are blocked by ribs based 

on the amplitude and cross correlation of their signals. The element signals collected from 

speckle targets and in the presence of clutter during a simulated and in vivo transcostal scans 

show that the average element amplitude and the average nearest-neighbor cross correlation 

are lower for the blocked elements than for than the remainder of the 2-D aperture. The 

growing aperture B-mode images created from these data indicate that the blocked elements 

are dominated by noise and that turning them OFF has a potential to improve visibility of 

liver vasculature. Such basic blocked-element compensation in combination with the 

amplitude-based blocked-element detection could be integrated in the work flow of a 

commercial ultrasound system and performed in real time. In the companion paper, the 

blocked-element detection algorithm is extended to large synthetic apertures, and is a 

prerequisite for adaptive compensation schemes that aim at improving the focus quality and 

reducing the near-field reverberation clutter.
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Fig. 1. 
Orthogonal slices of the speed of sound maps used for the transcostal simulations (left) and 

for the control simulations (right). The elevation and lateral slices are taken through the 

center of the volumes, while the C-scan is taken at 1-cm depth. For the transcostal case, a rib 

can be observed at about 1-cm depth in the elevation slice and in the C-scan; it is colored in 

black and its speed of sound is 800 m/s. The rest of the tissue is displayed over the dynamic 

range shown in colorbar. In the acoustic maps used for the control simulations, ribs are 

replaced by the connective tissue. In the lateral and elevation slices, the lesion boundaries 

are denoted using a black dashed line.
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Fig. 2. 
Average amplitude (left) and average nearest-neighbor normalized cross correlation (right) 

of the simulated element-signals collected from the 2-D array (a) during simulated control 

and (b) transcostal liver scans. Averaging is done in the axial dimension between 4- and 8-

cm depth. For the control simulation, in which bone was substituted with connective tissue 

properties, both amplitude and nearest-neighbor cross correlation of the element signals are 

uniform across the array. For the transcostal simulation, the top four rows of elements show 

lower amplitude and cross correlation values than the rest of the aperture, corresponding to 

elements blocked by a rib (Fig. 1).
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Fig. 3. 
Average element amplitude (left) and average nearest-neighbor normalized cross correlation 

(right) displayed across the 2-D apertures for (a) in vivo liver scan through the abdomen and 

(b) matching liver scan through the ribs. The images are formatted in a similar way as in Fig. 

2. For the abdominal acquisition, both quantities appear relatively uniform throughout the 

extent of the aperture indicating echoes have been received without significant obstruction. 

For the transcostal acquisition, a region of low values in the bottom-right corner (of both 

images) is attributed to a rib blocking that part of the aperture. The shape of the blocked 

region suggests diagonal orientation of the rib with respect to the array surface.
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Fig. 4. 
Average element amplitude (left) and average nearest-neighbor cross correlation (right) 

displayed as functions of the transmit beam direction for a single row of elements, and for 

(a) same abdominal and (b) transcostal acquisitions used to create the images in Fig. 3. For 

the abdominal acquisition, high values across both images indicate that no acoustic obstacles 

are encountered as the transmit beam is swept in the lateral plane. For the transcostal 

acquisition, the shape of the region of low values in both amplitude and cross correlation 

images indicates that the number of blocked elements (in the row of interest) decreases as 

the transmit beam is steered away from the rib.
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Fig. 5. 
B-mode images of liver created from the simulated control acquisition, where ribs were 

assigned acoustic properties of the surrounding connective tissue. The images are 

reconstructed using the receive apertures that contain the upper 33% of elements (left) and 

all of the array elements (right). An anechoic lesion inserted in the liver model can be 

observed at 6-cm depth in both images. Increasing the extent of receive aperture in elevation 

dimension reduces slice thickness, which results in lower clutter inside the lesion and 

improves the definition of its edges. The images are log compressed and displayed using the 

60-dB dynamic range.
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Fig. 6. 
B-mode images of liver reconstructed from the simulated transcostal acquisition where a 

part of the aperture is blocked by a rib. Under each B-mode image is the image of average 

element amplitude, with the locations of used receive elements shaded in red. The 33%-Rx-

aperture B-mode image (left), which is reconstructed using mainly blocked elements, is 

dominated by noise and no structures can be identified. The lesion visibility is improved in 

the full-Rx-aperture B-mode image (right) as it contains more signals from the nonblocked 

elements. A white dashed circle in the 33%-Rx-aperture B-mode image denotes the extent of 

the lesion in the liver model.
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Fig. 7. 
Contrast and CNR of the anechoic lesion in the liver model measured as functions of the 

receive-aperture size for the simulated control scan (dashed lines) and the simulated 

transcostal scan (solid lines). The two image quality metrics are presented on the same graph 

using the dual-axis plots with contrast values displayed on the left y-axis and CNR values 

displayed on the right y-axis. For the control simulation, both contrast and CNR increase 

gradually with the receive aperture size. For the transcostal simulation, the image-quality 

metrics remain low initially, as the Rx aperture contains mainly blocked elements, and then 

they grow as the signals from the nonblocked elements are added to the image. As a 

reference, the black vertical dashed lines denote sizes of the Rx-apertures used to reconstruct 

the B-mode images in Figs. 5 and 6. The blocked part of the aperture (during the transcostal 

simulation) is denoted with a thick black line along the x-axis.
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Fig. 8. 
B-mode images of in vivo liver vasculature acquired through the abdomen and reconstructed 

using receive apertures of different sizes. Left to right: images are reconstructed using the 

receive apertures that increase in elevation dimension and contain the upper 8%, 67%, and 

100% of array elements. All images are log compressed and displayed using a 45-dB 

dynamic range. A vessel located in the center of FOV at 7-cm depth can be observed for all 

three receive-aperture sizes. Increasing the receive aperture reduces clutter and improves 

visibility of the vessel in the resulting images.
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Fig. 9. 
B-mode images of in vivo liver vasculature acquired transcostally and reconstructed using 

the receive apertures of the same sizes as in Fig. 8. The receive aperture is grown to 

gradually transition from nonblocked to blocked region of the array, and is denoted with red 

overlay in the element-amplitude images from Fig. 3(b) under each B-mode. All B-mode 

images are log compressed and displayed using a 45-dB dynamic range. When only 8% of 

receive elements are used, the B-mode scan is overwhelmed with noise and no structures can 

be identified. When 67% of the receive aperture is used and most of the blocked elements 

are still turned OFF, a large blood vessel can be observed in the right-hand side of FOV at 

about 9-cm depth. The B-mode image created using the full receive aperture (i.e., the 

uncompensated image) includes the noise from the blocked elements and displays higher 

levels of clutter inside the vessel compared to its 67%-receive-aperture counterpart.
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Fig. 10. 
Contrast and CNR as functions of receive-aperture size for the blood vessels captured during 

the abdominal acquisition (left) and transcostal acquisition (right). Colored circles denote 

the contrast and CNR values that correspond with the images in Figs. 8 and 9. For the 

abdominal acquisition (left), both contrast and CNR increase with receive aperture size 

reaching maxima of 11.4 dB and 1.57, respectively, at full aperture. For the transcostal 

acquisition (right), the two image-quality metrics improve as the receive aperture grows until 

signals from the blocked elements are included in the image. The image is optimally 

compensated when the vessel contrast and CNR reach maxima, at the 66.7% receive 

aperture. This aperture size is denoted by a black vertical dashed line in both plots. A black 

thick line along the x-axis is used to denote blocked part of the aperture during the 

transcostal acquisition.
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TABLE I

Acoustic Properties of Different Tissue Types Used in Simulation

Tissue B/A α (dB/MHz per cm) c0 (m/s) ρ0 (kg/cm3)

Homogeneous 9.0 0.50 1540 1000

Fat 9.6 0.40 1479 937

Muscle 8.0 0.15 1550 1070

Connective 8.0 0.68 1613 1120

Liver 7.6 0.50 1570 1064

Bone 0 5 800 550
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TABLE II

Simulated Transducer Properties

Number of Elements in Lateral 48

Number of Elements in Elevation 36

Center Frequency 2.5 MHz

Bandwidth 50%

Lateral Pitch 0.4 mm

Elevation Pitch 0.4 mm

Transmit Focus 4 cm
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