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Abstract

Time domain finite difference simulations are used extensively to simulate wave propagation. 

They approximate the wave field on a discrete domain with a grid spacing that is typically on the 

order of a tenth of a wavelength. The smallest displacements that can be modeled by this type of 

simulation are thus limited to discrete values that are integer multiples of the grid spacing. This 

paper presents a method to represent continuous and subresolution displacements by varying the 

impedance of individual elements in a multi-element scatterer. It is demonstrated that this method 

removes the limitations imposed by the discrete grid spacing by generating a continuum of 

displacements as measured by the backscattered signal. The method is first validated on an ideal 

perfect correlation case with a single scatterer. It is subsequently applied to a more complex case 

with a field of scatterers that model an acoustic radiation force induced displacement used in 

ultrasound elasticity imaging. A custom finite difference simulation tool is used to simulate 

propagation from ultrasound imaging pulses in the scatterer field. These simulated transmit-

receive events are then beamformed into images which are tracked with a correlation based 

algorithm to determine the displacement. A linear predictive model is developed to analytically 

describe the relationship between element impedance and backscattered phase shift. The error 

between model and simulation is λ/1364, where λ is the acoustical wavelength. An iterative 

method is also presented that reduces the simulation error to λ/5556 over one iteration. The 

proposed technique therefore offers a computationally efficient method to model continuous 

subresolution displacements of a scattering medium in ultrasound imaging. This method has 

applications that include ultrasound elastography, blood flow, and motion tracking. This method 

also extends generally to finite difference simulations of wave propagation, such as 

electromagnetic or seismic waves.

I. Introduction

Finite difference simulations can solve the full acoustical wave equation without introducing 

approximations to the propagation physics [1], [2], [3]. The advantage of finite differences 

simulations of ultrasound imaging is that they can model fine heterogeneities, phase 

aberration, multiple scattering, and the generally complex acoustical anatomy of the human 

body [3], [4]. The disadvantage of finite difference modeling of the full-wave equation is its 
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computational cost which is significantly higher than ultrasound imaging simulations that 

solve approximations to the wave equation or that convolve the imaging impulse response 

with a field of scatterers [5].

When modeling small displacements with finite differences the computational cost can 

become even more restrictive. Finite difference methods subdivide a grid into a rectangular 

mesh so the mesh size imposes a discrete limit on scatterer movement, i.e. a scatterer cannot 

appear in between mesh points. This is unlike many finite element simulations which can 

use an unstructured and adaptive grid [6]. Therefore, for a direct representation of 

displacement, the smallest unit of displacement is determined by the spatial grid size. 

Typical displacements in ultrasound elastography are on the order of microns [7], [8]. For 

example, to model a 1 micron displacement directly in 2D for a 3×7 cm field of view and a 

2MHz emission would require 2.1 × 109 grid points. This is an unnecessarily refined grid 

and unnecessarily large computation because a grid spacing of λ/15, or 51 μm, would be 

sufficient to model an ultrasound pulse with a 100 dB dynamic range [4]. For this coarser 

grid spacing the number of points in the simulation is 8.0 × 105, which is almost four orders 

of magnitude smaller. Thus a displacement method that can be implemented on a coarse grid 

would provide significant computational benefits.

The objective of this paper is therefore to present and validate a method that can generate 

continuous subresolution displacements with a coarse finite difference grid spacing. The 

proposed method is based on the notion that a single scatterer can be composed of multiple 

elements. The total impedance of the scatterer is conserved but it can “flow” in between 

individual elements of the scatterer. The phase of the backscattered wave is shifted by 

changing the impedance distribution within the scatterer therefore generating an observed 

displacement. The process can happen continuously by changing the values of the scatterer 

elements rather than the position of the scatterer. This method is referred to as impedance 

flow for the remainder of the paper.

In the first part of the paper the impedance flow method is described with equations relating 

the impedance value of individual elements within a single scatterer to the observed 

displacement. This model is then verified with an idealized case of a single scatterer. The 

Fullwave finite difference simulation tool [3] is used to propagate a wave to a single 

impedance flow scatterer and the backscatterered signal is used to determine the 

displacement. The error between the model and the simulated impedance flow scatterer is 

characterized as a continuous subresolution function of displacement.

Once the impedance flow method has been established for a single scatterer a more complex 

ultrasound elastography scenario is investigated. A 2D field of scatterers is used as an input 

to the Fullwave simulation to generate ultrasound images with fully developed speckle. 

These scatterers are then displaced in silico with an acoustic radiation force impulse. This 

provides a continuous 2D distribution of displacements which is used to displace the 

scatterers and subsequently to simulate displaced ultrasound images. The proposed 

impedance flow scatterers are compared to a discrete implementation of scatterer motion. It 

is shown that the proposed method can accurately model this continuous and complex 
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scatterer motion at a computational cost that is many orders of magnitude less than an 

equivalent simulation with discretely displaced scatterers.

II. Analytical representation of the impedance flow method

Fig. 1 illustrates that for a direct representation of scatterer movement on a finite difference 

grid the smallest unit of displacement is determined by the spatial grid size. The image on 

the left is shows a reference scatterer on a 5 × 6 grid point mesh. The image in the middle 

illustrates the scatterer displaced down by a single mesh point, which is the smallest possible 

discrete unit of displacement. The proposed impedance flow method is shown on the right. 

This scatterer is composed of two elements and the impedance “flows,” in a conservative 

sense, from one element to the other. The backscattered ultrasound originates in part from 

the first element, and in part from the second. By adjusting the impedance the amount of 

backscattered energy can be weighted preferentially from the first or second element. The 

hypothesis is that for two elements that are much smaller than the wavelength that they will 

act, physically and numerically, as a single scatterer that can produce a continuous 

subresolution phase shift in the backscattered wave.

The impedance values of the two elements in the scatterer can vary arbitrarily. These two 

degrees of freedom can be constrained by 1) the desired magnitude of the backscattered 

wave and 2) the phase of the backscattered wave. Let zm be the medium impedance, z1 and 

z2 the impedance of the first and second elements in the scatterer. The magnitude of the 

backscattered wave is proportional to the observed impedance mismatch between the 

scatterer and the background medium. Here we denote the observed scatterer impedance as 

z0. We assume that the wave is sufficiently large compared to the scatterer so that the 

observed impedance is given simply by the average of the two elements:

(1)

Physically, the observed scatterer impedance is a fixed quantity that is invariant under 

displacement. However the elements z1 and z2 can vary individually. Here they are allowed 

to vary until they reach the same value as the background, zm because when the scatterer 

element has the same impedance value as the background it stops scattering. This second 

constraint can thus be written as

(2)

In this equation we assume that z0 < zm although an equivalent relationship with an inverted 

inequality and with z0 > zm would be equally valid.

The two limit cases are easily understood. If z2 = zm then the second element is transparent 

and the scatterer is in the configuration shown on the left of Fig. 1. Similarly when z1 = zm 

the scatterer is in the configuration shown in the middle plot of Fig. 1. Therefore, according 
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to this model, the left and middle plots of Fig. 1 are interpreted to have a scatterer composed 

of two elements, even though the scatterer appears to have only one element. For 

intermediate values of γ, shown on the right of Fig. 1, the impedance can be expressed by 

two parametric equations for z1 and z2

(3)

(4)

where the fractional shift parameter γ has values 0 ≤ γ ≤ 1. Note that Eqs. 3 and 4 satisfy 

Eq. 1 for all values of γ. For the midpoint value of γ = 1/2 the impedance of the elements is 

z1 = z2 = z0, the average impedance of the scatterer. According to Eqs. 3 and 4 the shaded 

elements in the left and middle plots in Fig. 1 have an impedance of 2z0 − zm and the non-

shaded elements have an impedance of zm. Then, according to the two-element 

interpretation, the impedance for the scatterer is given by (2z0 − zm + zm)/2 = z0, which 

confirms that the total impedance for the two-element scatterer is consistent with the 

definition. In the following section we test the hypothesis that the phase of the backscattered 

signal varies linearly as a function of the impedance parameter, γ.

III. Model validation and calibration with Fullwave FDTD acoustic 

simulations

The validity of the proposed impedance flow method was tested with Fullwave, a custom 

finite difference time domain (FDTD) simulation tool that has been used extensively in the 

context of ultrasound imaging [3], [4]. The simulation domain was chosen to be a 2.4 cm 

wide by 7 cm deep with a grid spacing, Δx, of 15 points per wavelength with respect to a 2 

MHz transmit frequency. This is equivalent to a 468 × 1364 point domain, with a grid 

spacing of 51μm. A linear array with an F/2 unapodized aperture was used to focus a 2 cycle 

pulse at a depth of 45mm.

The Courant-Friedrichs-Lewy (CFL) condition, which determines the stability and 

convergence of the finite difference code [9], is defined as

(5)

where c is the speed of sound and Δt is the size of the time step. The CFL condition fixes the 

ratio of the time step to the grid spacing and here it was set to 0.4. For the discrete 

displacement shown in Fig. 1 the backscattered signal is delayed by 2Δx. According to Eq. 5 

this is equivalent to a time delay of 5Δt. In subsequent discussion displacement by a spatial 

element and displacement by five time samples will be used interchangeably. Table I 

summarizes the these equivalence relationships between space, time, and grid sizes. A speed 
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of sound c0 = 1540 m/s was assumed. There is a factor of 2 between displacement and time 

delay due to the range equation, where the distance d depends on the total travel time t 
according to t = 2d/c0.

A set of simulations was performed with a single subresolution scatterer at the focus with a 

mean impedance set to z0 = 0.9875zm. The density ρ was set to a constant 1000 kg/m3 for 

the medium and scatterers so that only the speed of sound was used to determine the 

impedance. The speed of sound of the background medium was set to 1540 m/s and the 

speed of sound for the two elements in the scatterer was allowed to vary according to Eqs. 3 

and 4. Thus, according to the impedance relationship z = ρc, the speed variations have a 

maximum of 1540 m/s and a minimum of 1502 m/s.

To determine the displacement the backscattered echo from the original scatterer was 

compared to the echo from the displaced scatterer. This was performed with a correlation 

based displacement tracking code [10] which has been validated in the context of acoustic 

radiation force impulse based imaging and is currently used extensively in ultrasound 

elastography. The raw radio-frequency (RF) data was interpolated by a factor of three with a 

cubic spline algorithm. Normalized cross correlation with a kernel length of 3λ (2.3 mm) 

was then used to determine the discrete correlation function over a search range of 2/3λ (i.e. 

10 time samples, at the original sampling rate). Finally a continuous estimate of the 

displacement and correlation value was obtained with a continuous parabolic fit of the peak 

of the correlation function. This peak corresponds to the axial displacement at a single 

location.

Fig. 2 shows the displacement as a function of the impedance parameter, γ. It compares the 

displacement measured in the simulation (dashed line) with the linear prediction described 

in the previous section (solid line). There is little visible difference between these two lines. 

The error is shown on the right of Fig. 2. The root-mean-square (RMS) error is 10.99 × 10−3 

spatial samples, or in terms of the acoustical wavelength, λ/1364. Even though the error is 

much smaller than the wavelength, the impedance flow method can be improved further.

A. Improvement of the simulated displacement accuracy with grid-dependent calibration

The data in Fig. 2 was used as calibration curve so that the simulated displacements would 

match the linear prediction more closely. This was implemented by simply using the dashed 

curve of Fig. 2 as a lookup table for the desired displacement in the Fullwave simulation. 

The results of this calibrated simulation are shown in Fig. 3, for which the RMS error is 

2.699×10−3 spatial samples, or equivalently λ/5556. This is approximately a factor of four 

improvement compared to the uncalibrated measurements in Fig. 2.

To achieve even higher accuracy this calibration procedure can be repeated in an iterative 

fashion. For the grid size considered here performing over two iterations yielded diminishing 

returns in terms of accuracy, suggesting that at these low errors the limiting factor may be 

the machine precision of computer arithmetic. In summary, depending on the desired 

accuracy, the element impedance can be determined directly from the linear prediction or, 

for added precision, with a calibration simulation. Compared to the analytical model the 

disadvantage of the calibration approach is that a new simulation must be performed if the 
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grid parameters are changed. However if a calibration curve has been determined for a 

specific grid spacing then any grid with that same spacing and any scatterer on that grid can 

use that single calibration curve.

IV. Validation of the impedance flow method for radiation force 

displacements

A radiation force based displacement, such as those used in ultrasound elastography [7], [8] 

was determined based on the approximation that the displacement is proportional to the 

intensity. In reality the displacement is more complex and is given by the time-dependent 

interaction of the radiation force, which is only approximately proportional to the intensity, 

with the soft tissue viscoelastic response [11]. These effects are ignored as they are outside 

the scope of this paper.

The intensity distribution of an F/8 transducer with a 45 mm focus was calculated with the 

Fullwave simulation. The remainder of the transducer and simulation parameters remained 

unchanged with respect to the description in the previous section. The displacement was 

assumed to be directly proportional to the radiation force and it is shown on the left of Fig. 4 

in units of time samples. In terms of physical displacement this corresponds to a maximum 

range of 77 μm. This is a relatively large displacement compared to the typical ranges 

induced by acoustic radiation force, and it is meant to favor the discrete element 

representation of displacement, which can’t model small displacements, over the proposed 

impedance flow method which is designed to model small displacements.

A field of subresolution scatterers, shown in the middle plot of Fig. 4, was used to simulate a 

uniformly scattering medium. Over 12 scatterers per resolution volume were used so that the 

speckle statistics were fully developed [12]. These scatterers were then displaced either 

discretely or according the impedance flow method. For the discrete element representation 

of displacement the theoretical scatterer position was rounded to its nearest grid position in 

space. Since movement by a single element is equivalent to a 51μm displacement this 

operation rounded all displacements to either 0μm or 51μm.

At the scale illustrated in Fig. 4 there is no visual difference between the three scatterer 

fields (reference, discretely displaced, and the impedance flow method). To illustrate the 

difference between the simulation fields Fig 5 zooms in on the focal region at a depth 

between 43 and 46 mm. Each of the individual scatterer elements on the right plot of Fig. 5 

continuously represents the displacement in the manner illustrated on the right of Fig. 1. The 

proposed impedance flow method was used to represent a maximum shift of half a pixel in 

the positive or half a pixel in the negative direction. A shift of 0.75 pixels in the positive 

direction, for example, would result in a discrete shift of positive one pixels and a negative 

impedance flow shift of 0.25 pixels. For these simulations the simpler linear prediction 

impedance flow method shown in Fig. 2 was chosen rather than the more accurate calibrated 

impedance flow method. Results shown in subsequent sections demonstrate that this simpler 

model is sufficient because its error is smaller than the error associated with fundamental 

tracking limits [13].
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A. Generation of ultrasound images with impedance flow scatterers

The Fullwave tool was used to generate ultrasound images based on simulations of the 

propagation physics. This technique has been described previously [3] and it is summarized 

briefly here. Since the simulation tool is based on propagation physics the process to 

generate an B-mode image is the same as what is typically performed with an ultrasound 

scanner. A focused transmit beam is sent into the medium. The scatterers reflect sound back 

towards the surface. The simulated array is used to “receive” the basckscattered wave and 

conventional delay-and-sum beamforming is used to generate a B-mode image.

The resulting B-mode image is shown on the right of Fig. 4 for the reference scatterer field. 

At this scale the discretely displaced scatterers and scatterers displaced according to the 

proposed impedance flow method appear to be identical and therefore have not been plotted. 

These images show that the first order scattering behavior of the impedance flow scatterers 

is equivalent to scattering from conventional uniform scatterers. The scatterer displacements 

are small enough that there is no discernible difference between the B-mode images 

corresponding to the three scatterer fields (reference, discretely displaced, and the 

impedance flow method). However there are measurable differences in the RF data which 

can be measured with tracking algorithms.

B. Displacement estimation

The beamformed RF data along the centerlines of the three B-mode images corresponding to 

the scatterer fields in Fig. 5 is shown in Fig. 6. The depth is zoomed in to a 5 mm region at 

the focus, between 42.5mm and 47.5mm. There is a clear phase shift between the reference 

(solid cyan), the discretely displaced scatters (dashed red) and the impedance flow method 

(dash-dotted black).

To quantify the displacements the previously described correlation based tracking algorithm 

[10] was applied to the beamformed RF data generated by the simulations. The parameters 

used for this tracking algorithm remained the same as those described in Section III.

To remove variability associated with individual speckle realizations the displacements were 

calculated for 20 independent scatterer realizations. Each independent realization was used 

to construct three fields: 1) the reference scatterers, 2) discretely displaced scatterers, and 3) 

impedance flow scatterers.

The average displacements estimated for the 2D scatterer fields are shown on the left of Fig. 

7 for the discretely displaced scatterers, and on the right of Fig. 7 for the impedance flow 

scatterers. Note that these calculated displacements can be compared to the analytical 

displacement shown on the left of Fig. 4. As expected the discretely displaced scatterers 

yielded a uniform displacement estimate rounded to the nearest unit of the spatial grid, 

which is equivalent to a 5 time sample displacement. For this grid spacing the discretely 

displaced scatterer field yields a binary approximation to the analytical field. The 

displacements for the impedance flow scatterers, on the other hand, closely resemble the 

analytical displacements.
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Fig. 8 directly compares the analytical displacement (solid cyan) to the discretely displaced 

scatters (dashed red) and the impedance flow scatterers (dash-dotted black) along the center 

axis of propagation (left), and laterally at the focus (right). The error bars were calculated 

based on the standard deviation from the different scatterer realizations.

These plots show clearly that scatterers that were discretely displaced yielded a uniform 

displacement estimate rounded to the nearest unit of the spatial grid, i.e. a 0 or 5 time sample 

displacement. There is a small boundary region of as the displacement estimates transition 

from one quantum of displacement to another, which is consistent with the spatial resolution 

of the imaging system.

The impedance flow scatterers generate a continuum of displacements that closely match the 

analytical displacements. The RMS error between the analytical and the impedance flow 

calculation is 0.024 spatial samples or equivalently λ/614. This is larger than the 

displacement error for a single scatterer as calculated in Section III which was 0.011 spatial 

samples.

In addition to the calibration error described in Section III, there are two other main sources 

of error. The first is due to the individual speckle realization. Since the scatterers have 

moved the displaced backscattered signal does not perfectly match the reference 

backscattered signal. This generates correlation values that are on average 0.9914 and which 

places a fundamental limit on the accuracy of the displacement estimates imposed by the 

Cramer-Rao lower bound [13], [10]. This decorrelation is principally responsible for the 

observed variability in the error bars, which on average is 0.020 spatial samples. The second 

error mechanism is due to the size of the correlation kernel, which is 3λ or equivalently 45 

spatial samples. Motion that is smaller than the kernel size tends to be blurred out. In Fig. 8 

this blurring is apparent in the peak at 26 mm depth and the trough at 30 mm depth. This is 

also why the main peak at 45mm depth slightly underestimates the true displacement and the 

sides slightly overestimate the true displacement.

Therefore there is more error due to jitter imposed by the fundamental tracking limits and 

blurring from the finite kernel length than error from the impedance flow scattering. The 

proposed method can accurately represent a continuum of displacements and is thus able to 

capture the relevant scattering physics associated with small continuous displacements.

V. Equivalent computational cost for discrete displacements

As was mentioned in the introduction, the displacement resolution of the discretely 

displaced scatterers can be increased by simply constructing a simulation with finer grid 

spacing. However the computation time for a 2D finite difference simulation increases 

cubically as a function of the inverse of the grid spacing and the memory requirements 

increase quadratically.

The error quantification from Section III can be used to determine the equivalent grid size 

that would be required to obtain the same precision as the impedance flow displacement 

with a discrete displacement. The simulations presented here had a run time of 

approximately 20 minutes on a single core of an Intel Xeon E5-2650 v2 2.60GHz CPU. To 
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obtain a displacement resolution equivalent to 0.011 spatial samples a grid that is finer by a 

factor of 90.9 would be required. The computation time would increase by 7.5×105 and the 

memory requirement would increase by 8.3 × 103.

For the calibrated impedance flow simulation with one iteration the grid would have to be 

refined by a factor of 370. This would increase the computation time by a factor of 5.1 × 107 

and the memory requirements by 1.4 × 105.

For a 3D simulation the increase in computation time is quartic and the increase in memory 

is cubic. The computational costs would therefore increase even more dramatically than in 

the 2D case.

VI. Discussion and Conclusion

The strength of finite difference methods is that they can be used to model the full wave 

propagation physics in heterogeneous materials. Since the focus of this paper was on 

validation of the method, simple configurations, either a single scatterer or a uniformly 

distributed field of scatterers, were used. In fact, for these configurations other simulation 

methods, could be used to calculate the backscattererd acoustics with less computational 

effort.

The applications of the impedance flow scatterers and finite differences in general is 

therefore best suited to more complex fields. For example the Fullwave code has been used 

to model harmonic imaging [3], reverberation clutter [4], and spatial coherence imaging [14] 

with detailed anatomical models of the human body and the impedance flow method opens 

up the possibility of modeling of displacements within these more complex domains. 

Another application is to the development of more accurate tracking algorithms, such as 

those used to track shear shock waves which is a challenging tracking problem due to the 

discontinuities in the particle velocity [15].

Ultrasonic displacement tracking is more accurate along the depth axis [16] and here only 

displacements along the depth axis were considered. However the impedance flow method 

can be extended to model 2D and 3D subresolution displacements. This entails generating 

scatterers with at least a 2×2 element configuration for 2D displacements and a 2×2×2 

element configuration for 3D displacements. The mechanism for generating displacements 

remains the same, i.e. the total impedance of the scatterer is conserved, and the impedance 

“flows” in between the constitutive elements of the scatterer. This flow can be applied 

independently along different axes. For example, for a for a 2×2 scatterer a fractional shift γ 
can be applied along the propagation axis, then a second shift η across it.

The examples presented and the development provided consider isolated scatterers in a 

uniform background, so that the surrounding grid points have a uniform impedance zm. The 

method could be extended to the case of generally random impedance values throughout the 

grid provided that the scatterers are defined by two grid elements. Then the proposed 

impedance flow method can be applied directly to each element pair.
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In summary, the impedance flow scattering method of representing subresolution 

displacements was developed and described theoretically. Finite difference simulations were 

shown to closely follow theoretical predictions and the error between model and simulation 

was λ/1364. This error can be reduced iteratively by calibrating the simulation, in which 

case the agreement with theory was reduced to λ/5556 over one iteration. It was shown that 

the impedance flow method can accurately represent the displacements induced by acoustic 

radiation force, which has particular applications to ultrasound elastography. In general this 

method has applications to areas of ultrasound where displacement tracking is used, such as 

blood flow or motion tracking. Finite difference simulations are used widely to model wave 

propagation and the impedance flow method would be simple to implement in other 

domains such as seismology or electromagnetism.
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Fig. 1. 
Illustration of a 5 × 6 point grid. Left: a reference scatterer. Middle: a scatterer with a 

discretized displacement of one element. Right: a subresolution displacement based on the 

proposed impedance flow scattering.
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Fig. 2. 
The left plot shows the displacement as a function of the impedance parameter γ according 

to theoretical prediction (solid line) and measured with the Fullwave FDTD simulation 

(dashed). The right plot shows the error between theory and measurement.
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Fig. 3. 
The left plot shows the displacement as a function of the impedance parameter γ according 

to the theoretical prediction (solid line) and measured with the calibrated Fullwave FDTD 

simulation (dashed). With a single correction iteration the RMS error is a reduced by a factor 

of 4 compared to Fig. 2. The right plot shows the error between theory and measurement.
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Fig. 4. 
The acoustic radiation force from a focused transducer was used to directly approximate the 

displacements in time samples (left). The reference field of subresolution scatterers is shown 

in the middle and the corresponding B-mode image based on the transmit-receive Fullwave 

simulations is shown on the right.
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Fig. 5. 
A zoomed-in version of Fig. 4. The acoustic radiation force is shown on the left. The 

reference field of subresolution scatterers (middle left) was displaced discretely on spatial 

grid points (middle right) or according to the proposed impedance flow method (right).
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Fig. 6. 
The beamformed RF data on the centerline of the three scatterer fields shown in Fig. 5 

zoomed in to the focal region between 42.5mm and 47.5mm. The amplitude of the RF data 

is represented in arbitrary units (A.U.).
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Fig. 7. 
The displacements calculated from the backscattered RF data using a correlation based 

algorithm for the discretely displaced scatterers (left), and the impedance flow scatterers 

(right). Cf with the analytical displacements shown on the left of Fig. 4.
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Fig. 8. 
A comparison of the analytical displacement (solid cyan) to the displacements calculated 

with the discretely displaced scatters (dashed red) and impedance flow scatterers (dash-

dotted black) along the center axis of propagation (left), and laterally at the focus (right).
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TABLE I

Displacement equivalence

Spatial samples Displacement Time samples Time delay

1 51μm 5 67 ns
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