50 research outputs found

    Habitat adaptation drives speciation of a Streptomyces species with distinct habitats and disparate geographic origins

    Get PDF
    Microbial diversification is driven by geographic and ecological factors, but how the relative importance of these factors varies among species, geographic scales, and habitats remains unclear. Streptomyces, a genus of antibiotic-producing, spore-forming, and widespread bacteria, offers a robust model for identifying the processes underlying population differentiation. We examined the population structure of 37 Streptomyces olivaceus strains isolated from various sources, showing that they diverged into two habitat-associated (free-living and insect-associated) and geographically disparate lineages. More frequent gene flow within than between the lineages confirmed genetic isolation in S. olivaceus. Geographic isolation could not explain the genetic isolation; instead, habitat type was a strong predictor of genetic distance when controlling for geographic distance. The identification of habitat-specific genetic variations, including genes involved in regulation, resource use, and secondary metabolism, suggested a significant role of habitat adaptation in the diversification process. Physiological assays revealed fitness trade-offs under different environmental conditions in the two lineages. Notably, insect-associated isolates could outcompete free-living isolates in a free-iron-deficient environment. Furthermore, substrate (e.g., sialic acid and glycogen) utilization but not thermal traits differentiated the two lineages. Overall, our results argue that adaptive processes drove ecological divergence among closely related streptomycetes, eventually leading to dispersal limitation and gene flow barriers between the lineages. S. olivaceus may best be considered a species complex consisting of two cryptic species.China Ocean Mineral Resources R&D Association/[DY135-B2-02]/CONRA/ChinaNational Natural Science Foundation of China/[32070001 and 91751118]/NSFC/ChinaRV KEXUE/[KEXUE2019GZ05]//ChinaChinese Academy of Sciences/[KEXUE2019GZ05]/CAS/ChinaUniversidad de Costa Rica/[801-B0-530]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ciencias de la Computación e Informátic

    Papel de la bacteria endosimbionte Wolbachia en el control de enfermedades vectoriales: dengue, zika y chikunkunya

    Get PDF
    Wolbachia es un género de bacterias perteneciente al orden Rickettsiales, que participa en diversas relaciones simbióticas con varios organismos, principalmente artrópodos y nematodos. Debido a su capacidad para inducir ciertos fenotipos reproductivos en sus hospederos, constituye un atractivo candidato para su uso como control biológico de plagas y vectores. Con el fin de proporcionar información sobre esta bacteria y sus posibles aplicaciones de control en la lucha contra el dengue y otras enfermedades transmitidas por vectores, se realizó una revisión utilizando las bases de datos de Pubmed y BINASS. Como metodología se incluyeron artículos en lengua inglesa, referentes a Wolbachia y su uso como control biológico, entre 2001 y 2017, hallados bajo las palabras clave: Wolbachia, control biológico, dengue, zika, chikungunya. Se puede resaltar que la aplicación de esta estrategia de control biológico en Costa Rica constituye un reto que involucraría el apoyo de autoridades políticas, trabajando en conjunto con los sectores académico y comunitarioWolbachia is a genus of bacteria belonging to the order Rickettsiales that participates in diverse symbiotic relationships with several organisms, mainly arthropods and nematodes. Due to its ability to induce certain reproductive phenotypes in its hosts, it is an attractive candidate for its use as a biological agent to control of pests and vectors. In order to provide information on this bacterium and its potential control applications in the fight against dengue and other vector-borne diseases, a review was performed using Pubmed and BINASS databases. Articles in English referring to Wolbachia and its use as biological control between 2001 and 2017 where included in the search; and were found under the key words: Wolbachia, biological control, dengue, zika, chikungunya. It can be emphasized that the implementation of this biological control strategy in Costa Rica constitutes a challenge that would involve the support of the political authorities working along with the academic and community sector.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin

    Registro de galhas em plantas da Área de Conservação Guanacaste, Costa Rica, como conceito integrado de um banco de dados biológico

    Get PDF
    Galling insects are specialist herbivorous that have the ability of manipulating plant tissue to form complex biological structures called galls. Even though different organisms have the ability to induce galls in plants, insect galls have the highest degree of structural complexity. The main goal of this study was to obtain a preliminary systematic record of plant gall morphotypes from the Guanacaste Conservation Area in Costa Rica and integrate the information into a biological database. Plant gall morphotypes were recorded, characterized and deposited into a specialized herbarium established as a reference for the inventory. Moreover, organisms associated with gall morphotypes were included in the inventory when it was possible to obtain and identify them. Galls were collected in the rainy season over a period of three years. In total, we recorded forty-four families, seventy genera, and eighty-seven host plant species. One hundred thirty-one morphotypes of plant galls were identified in the Guanacaste Conservation Area. The family with the highest number of gall morphotypes was Fabaceae (8.4%). Leaves were the organ with the largest number of galls (71%), followed by stems (17.6%), and apical buds (6.9%). The predominant gall shape was globular (25.2%), followed by discoid (18.3%). Fifty-nine percent of the galls had a glabrous texture, which was most common on leaves, with 77%. One hundred twenty of our field records (91.6%) of plant galls were new morphotypes not only for Costa Rica but also the world. As a consequence of this research and considering the prospect of future increases in new gall records (and associated organisms), we proposed having the biological entities resulting from the inventory placed in a cecidiarium. This repository represents a standardized and comprehensive way to manage the data and biological materials associated with the plant galls. We also suggest a nomenclature for standardizing gall morphotype registries and identifications. This work is the first and most detailed inventory of plant galls carried out thus far in the Guanacaste Conservation Area.Instituto Tecnológico de Costa Rica/[5402- 2160- 3101]/TEC/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM

    Pollen Streptomyces Produce Antibiotic That Inhibits the Honey Bee Pathogen Paenibacillus larvae

    Get PDF
    Humans use natural products to treat disease; similarly, some insects use natural products produced by Actinobacteria to combat infectious pathogens. Honey bees, Apis mellifera, are ecologically and economically important for their critical role as plant pollinators and are host to diverse and potentially virulent pathogens that threaten hive health. Here, we provide evidence that Actinobacteria that can suppress pathogenic microbes are associated with A. mellifera. We show through culture-dependent approaches that Actinobacteria in the genus Streptomyces are commonly isolated from foraging bees, and especially common in pollen stores. One strain, isolated from pollen stores, exhibited pronounced inhibitory activity against Paenibacillus larvae, the causative agent of American foulbrood. Bioassay-guided HPLC fractionation, followed by NMR and mass spectrometry, identified the known macrocyclic polyene lactam, piceamycin that was responsible for this activity. Further, we show that in its purified form, piceamycin has potent inhibitory activity toward P. larvae. Our results suggest that honey bees may use pollen-derived Actinobacteria and their associated small molecules to mediate colony health. Given the importance of honey bees to modern agriculture and their heightened susceptibility to disease, the discovery and development of antibiotic compounds from hives could serve as an important strategy in supporting disease management within apiaries.National Institute for Health/[U19 AI142720]/NIH/Estados UnidosNational Institute of Food and Agriculture/[WISO1321]/NIFA/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM

    Genotyping and differential bacterial inhibition of Batrachochytrium dendrobatidis in threatened amphibians in Costa Rica

    Get PDF
    Amphibians have declined around the world in recent years, in parallel with the emergence of an epidermal disease called chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd). This disease has been associated with mass mortality in amphibians worldwide, including in Costa Rica, and Bd is considered an important contributor to the disappearance of this group of vertebrates. While many species are susceptible to the disease, others show tolerance and manage to survive infection with the pathogen. We evaluated the pathogen Bd circulating in Costa Rica and the capacity of amphibian skin bacteria to inhibit the growth of the pathogen in vitro. We isolated and characterized – genetically and morphologically – several Bd isolates from areas with declining populations of amphibians. We determined that the circulating chytrid fungus in Costa Rica belongs to the virulent strain Bd-GPL- 2, which has been related to massive amphibian deaths worldwide; however, the isolates obtained showed genetic and morphological variation. Furthermore, we isolated epidermal bacteria from 12 amphibian species of surviving populations, some in danger of extinction, and evaluated their inhibitory activity against the collection of chytrid isolates. Through bioassays we confirmed the presence of chytrid-inhibitory bacterial genera in Costa Rican amphibians. However, we observed that the inhibition varied between different isolates of the same bacterial genus, and each bacterial isolation inhibited fungal isolation differently. In total, 14 bacterial isolates belonging to the genera Stenotrophomonas, Streptomyces, Enterobacter, Pseudomonas and Klebsiella showed inhibitory activity against all Bd isolates. Given the observed variation both in the pathogen and in the bacterial inhibition capacity, it is highly relevant to include local isolates and to consider the origin of the microorganisms when performing in vivo infection tests aimed at developing and implementing mitigation strategies for chytridiomycosis.United States Fish and Wildlife Service/[46-6003541]/USFWS/Estados UnidosUniversidad de Costa Rica/[801-B2-029]/UCR/Costa RicaUniversidad de Costa Rica/[810-B7-A46]/UCR/Costa RicaMinisterio de Ciencia, Tecnología y Telecomunicaciones/[849-PINN-2015-I]/MICITT/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM

    Bacteria contribute to plant secondary compound degradation in a generalist herbivore system.

    Get PDF
    Herbivores must overcome a variety of plant defenses, including coping with plant secondary compounds (PSCs). To help detoxify these defensive chemicals, several insect herbivores are known to harbor gut microbiota with the metabolic capacity to degrade PSCs. Leaf-cutter ants are generalist herbivores, obtaining sustenance from specialized fungus gardens that act as external digestive systems and which degrade the diverse collection of plants foraged by the ants. There is in vitro evidence that certain PSCs harm Leucoagaricus gongylophorus, the fungal cultivar of leaf-cutter ants, suggesting a role for the Proteobacteria-dominant bacterial community present within fungus gardens. In this study, we investigated the ability of symbiotic bacteria present within fungus gardens of leaf-cutter ants to degrade PSCs. We cultured fungus garden bacteria, sequenced the genomes of 42 isolates, and identified genes involved in PSC degradation, including genes encoding cytochrome P450 enzymes and genes in geraniol, cumate, cinnamate, and alfa-pinene/limonene degradation pathways. Using metatranscriptomic analysis, we showed that some of these degradation genes are expressed in situ. Most of the bacterial isolates grew unhindered in the presence of PSCs and, using gas chromatography-mass spectrometry (GC-MS), we determined that isolates from the genera Bacillus, Burkholderia, Enterobacter, Klebsiella, and Pseudomonas degrade alfa-pinene, beta-caryophyllene, or linalool. Using a headspace sampler, we show that subcolonies of fungus gardens reduced alfa-pinene and linalool over a 36-h period, while L. gongylophorus strains alone reduced only linalool. Overall, our results reveal that the bacterial communities in fungus gardens play a pivotal role in alleviating the effect of PSCs on the leaf-cutter ant system.Great Lakes Bioenergy Research Center/[DE-SC0018409]/GLBRC/Estados UnidosGreat Lakes Bioenergy Research Center/[DE-FC02- 07ER64494]/GLBRC/Estados UnidosNational Institutes of Health/[U19 TW009872]/NIH/Estados UnidosNational Institutes of Health/[U19 AI142720]/NIH/Estados UnidosNational Science Foundation/[DEB-1927155]/NSF/Estados UnidosUniversidad de Costa Rica/[810-B0-501]/UCR/Costa RicaMinisterio de Ciencia, Tecnología y Telecomunicaciones/[FI-290-09]/MICITT/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin

    Burkholderia from fungus gardens of fungus-growing ants produce antifungals that inhibit the specialized parasite Escovopsis.

    Get PDF
    Within animal-associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants’ fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus converting the plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis. Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia and Paraburkholderia from 50% of the 52 colonies sampled, indicating that members of the family Burkholderiaceae are common inhabitants in the fungus gardens of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1cm. Genomic assessment of fungus garden-associated Burkholderiaceae indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed that these compounds are responsible for antifungal activities that inhibit Escovopsis but, at equivalent concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of fungus-growing ant colonies.National Institutes of Health/[U19 TW009872]/NIH/Estados UnidosNational Institutes of Health/[U19 AI142720]/NIH/Estados UnidosNational Institutes of Health/[T32 AI055397]/NIH/Estados UnidosNational Science Foundation/[DEB-1927155]/NSF/Estados UnidosSão Paulo Research Foundation/[2013/50954-0]/FAPESP/BrasilUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin

    Characterization of Batrachochytrium dendrobatidis Inhibiting Bacteria from Amphibian Populations in Costa Rica

    Get PDF
    Global amphibian declines and extinction events are occurring at an unprecedented rate. While several factors are responsible for declines and extinction, the fungal pathogen Batrachochytrium dendrobatidis (Bd) has been cited as a major constituent in these events. While the effects of this chytrid fungus have been shown to cause broad scale population declines and extinctions, certain individuals and relict populations have shown resistance. This resistance has been attributed in part to the cutaneous bacterial microbiome. Here, we present the first study characterizing anti-Bd bacterial isolates from amphibian populations in Costa Rica, including the characterization of two strains of Serratia marcescens presenting strong anti-Bd activity. Transcriptome sequencing was utilized for delineation of shifts in gene expression of the two previously uncharacterized strains of S. marcescens grown in three different treatments comprising Bd, heat-killed Bd, and a no Bd control. These results revealed up- and down-regulation of key genes associated with different metabolic and regulatory pathways. This information will be valuable in continued efforts to develop a bacterial-based approach for amphibian protection as well as providing direction for continued mechanistic inquiries of the bacterial anti-Bd response.Fish and Wildlife Service/[46-6003541]/USFWS/Estados UnidosUniversidad de Costa Rica/[801-B2-029]/UCR/Costa RicaGeneral Medicine Sciences of the National Institutes of Health/[P20GM103443]7NIGMS/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin

    Soybean protease inhibitors increase Bacillus thuringiensis subs. israelensis toxicity against Hypothenemus hampei

    Get PDF
    The coffee berry borer (Hypothenemus hampei Ferrari, CBB) is one of the most devastating pests on coffee plantations around the world. Although CBB is susceptible to the effect of δ–endotoxins of Bacillus thuringiensis subs. israelensis (Bti) at laboratory level, the efficacy of this control method is poor in the field, presumably due to the inactivation by digestive proteases different to those required for protoxin activation. Objective. To study whether the addition of a soybean flour extract enriched with protease inhibitors (PI), mixed with Bti crystals and spores (Bti-sc) in an artificial diet, could improve the toxicity of Bti against CBB. Materials and methods. This study was performed in San José, Costa Rica, between 2012 and 2013. A set of adult female CBB insects was exposed to a mixture containing different concentrations of a partially purified soybean meal extract with active PI and lyophilized Bti-sc, and were tested through a bioassay in artificial diet to estimate the sub-lethal concentration (LC50). The mortality results were validated by observing the dissected midgut, whose ultrastructure was analyzed by transmission electron microscopy. Results. The soybean extracts partially degraded the Bti-sc complex, it reduced its LC50 by almost four times (from 1.135 to 0.315 μg μl-1) and enhanced CBB mortality in a concentration-dependent manner. Histological analyses of the midgut confirmed this synergistic effect, since severe epithelial damage to the intestinal epithelium of CBB exposed to Bti-sc + PI was visualized compared to Bti-sc alone. Conclusions. The combination of a soybean extract enriched in PI and Bti-sc enhanced the mortality effect over CBB, which was confirmed by the midgut collapse. Soybean flour is a cost-effective supplement that could increase Bti effectiveness against CBB and delay the appearance of biological resistance.Universidad de Costa Rica/[801-A6-607]/UCR/Costa RicaUniversidad de Costa Rica/[801-A2-521]/UCR/Costa RicaAgroquímica Industrial RIMAC S.A./[]//Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de MedicinaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA

    Evidence for Widespread Associations between Neotropical Hymenopteran Insects and Actinobacteria

    Get PDF
    The evolutionary success of hymenopteran insects has been associated with complex physiological and behavioral defense mechanisms against pathogens and parasites. Among these strategies are symbiotic associations between Hymenoptera and antibiotic-producing Actinobacteria, which provide protection to insect hosts. Herein, we examine associations between culturable Actinobacteria and 29 species of tropical hymenopteran insects that span five families, including Apidae (bees), Vespidae (wasps), and Formicidae (ants). In total, 197 Actinobacteria isolates were obtained from 22 of the 29 different insect species sampled. Through 16S rRNA gene sequences of 161 isolates, we show that 91% of the symbionts correspond to members of the genus Streptomyces with less common isolates belonging to Pseudonocardia and Amycolatopsis. Electron microscopy revealed the presence of filamentous bacteria with Streptomyces morphology in brood chambers of two different species of the eusocial wasps. Four fungal strains in the family Ophiocordycipitacea (Hypocreales) known to be specialized insect parasites were also isolated. Bioassay challenges between the Actinobacteria and their possible targeted pathogenic antagonist (both obtained from the same insect at the genus or species level) provide evidence that different Actinobacteria isolates produced antifungal activity, supporting the hypothesis of a defensive association between the insects and these microbe species. Finally, phylogenetic analysis of 16S rRNA and gyrB demonstrate the presence of five Streptomyces lineages associated with a broad range of insect species. Particularly our Clade I is of much interest as it is composed of one 16S rRNA phylotype repeatedly isolated from different insect groups in our sample. This phylotype corresponds to a previously described lineage of host-associated Streptomyces. These results suggest Streptomyces Clade I is a Hymenoptera host-associated lineage spanning several new insect taxa and ranging from the American temperate to the Neotropical region. Our work thus provides important insights into the widespread distribution of Actinobacteria and hymenopteran insects associations, while also pointing at novel resources that could be targeted for the discovery of active natural products with great potential in medical and biotechnological applications.National Science Foundation/[MCB-0702025]/NSF/Estados UnidosUniversidad de Costa Rica/[801-B0-538]/UCR/Costa RicaUniversidad de Costa Rica/[810-B3-185]/UCR/Costa RicaNational Institute of Health/[U19 Al109673]/NIH/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicin
    corecore