16,713 research outputs found

    Soft X-ray emission in kink-unstable coronal loops

    Get PDF
    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the flare plasma heating. We compute the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops using MHD simulations and discuss the results of with respect to solar flare observations. The model consists of a highly twisted loop embedded in a region of uniform and untwisted coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly adiabatic. Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (> 20 MK), to a quick enhancement of X-ray emission and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures T > 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events but cools down conductively. The total thermal X-ray emission slowly fades away during this phase, and the high temperature component of emission measure distribution converges to the power-law distribution EMT4.2EM\propto T^{-4.2}. The amount of twist deduced directly from the X-ray emission patterns is considerably lower than the maximum magnetic twist in the simulated flux-ropes.Comment: submitted to A&

    Symmetry Aspects in Nonrelativistic Multi-Scalar Field Models and Application to a Coupled Two-Species Dilute Bose Gas

    Get PDF
    We discuss unusual aspects of symmetry that can happen due to entropic effects in the context of multi-scalar field theories at finite temperature. We present their consequences, in special, for the case of nonrelativistic models of hard core spheres. We show that for nonrelativistic models phenomena like inverse symmetry breaking and symmetry non-restoration cannot take place, but a reentrant phase at high temperatures is shown to be possible for some region of parameters. We then develop a model of interest in studies of Bose-Einstein condensation in dilute atomic gases and discuss about its phase transition patterns. In this application to a Bose-Einstein condensation model, however, no reentrant phases are found.Comment: 8 pages, 1 eps figure, IOP style. Based on a talk given by R. O. Ramos at the QFEXT05 workshop, Barcelona, Spain, September 5-9, 2005. One reference was update

    Thermal and non-thermal emission from reconnecting twisted coronal loops

    Full text link
    Twisted magnetic fields should be ubiquitous in flare-producing active regions where the magnetic fields are strongly non-potential. It has been shown that reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops. This scenario can be an alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. We use a combination of MHD simulations and test-particle methods, which describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD, and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us estimate thermal X-ray emission intensities. The electric and magnetic fields obtained are used to calculate electron trajectories using the guiding-centre approximation. These trajectories combined with the MHD plasma density distributions let us deduce synthetic HXR bremsstrahlung intensities. Our simulations emphasise that the geometry of the emission patterns produced by hot plasma in flaring twisted coronal loops can differ from the actual geometry of the underlying magnetic fields. The twist angles revealed by the emission threads (SXR) are consistently lower than the field-line twist present at the onset of the kink-instability. HXR emission due to the interaction of energetic electrons with the stratified background are concentrated at the loop foot-points in these simulations, even though the electrons are accelerated everywhere within the coronal volume of the loop. The maximum of HXR emission consistently precedes that of SXR emission, with the HXR light-curve being approximately proportional to the temporal derivative of the SXR light-curve.Comment: (accepted for publication on A&A

    Inverse Symmetry Breaking in Multi-Scalar Field Theories

    Full text link
    We review how the phenomena of inverse symmetry breaking (and symmetry nonrestoration) may arise in the context of relativistic as well as nonrelativistic multi-scalar field theories. We discuss how the consideration of thermal effects on the couplings produce different transition patterns for both theories. For the relativistic case, these effects allow the appearance of inverse symmetry breaking (and symmetry nonrestoration) at arbitrarily large temperatures. On the other hand, the same phenomena are suppressed in the nonrelativistic case, which is relevant for condensed matter physics. In this case, symmetry nonrestoration does not happen while inverse symmetry is allowed only to be followed by symmetry restoration characterizing a reentrant phase. The aim of this paper is to give more insight concerning the, qualitatively correct, results obtained by using one loop perturbation theory in the evaluation of thermal masses and couplings.Comment: 7 pages, 3 figures, talk given at the workshop on Quantum Fields Under the Influence of External Conditions, QFEXT05, Barcelona, sep-200

    Comments on the Quantum Potential Approach to a Class of Quantum Cosmological Models

    Get PDF
    In this comment we bring attention to the fact that when we apply the ontological interpretation of quantum mechanics, we must be sure to use it in the coordinate representation. This is particularly important when canonical tranformations that mix momenta and coordinates are present. This implies that some of the results obtained by A. B\l aut and J. Kowalski-Glikman are incorrect.Comment: 7 pages, LaTe

    Recording from two neurons: second order stimulus reconstruction from spike trains and population coding

    Full text link
    We study the reconstruction of visual stimuli from spike trains, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. If the reconstructed stimulus is to be represented by a Volterra series and correlations between spikes are to be taken into account, first order expansions are insufficient and we have to go to second order, at least. In this case higher order correlation functions have to be manipulated, whose size may become prohibitively large. We therefore develop a Gaussian-like representation for fourth order correlation functions, which works exceedingly well in the case of the fly. The reconstructions using this Gaussian-like representation are very similar to the reconstructions using the experimental correlation functions. The overall contribution to rotational stimulus reconstruction of the second order kernels - measured by a chi-squared averaged over the whole experiment - is only about 8% of the first order contribution. Yet if we introduce an instant-dependent chi-square to measure the contribution of second order kernels at special events, we observe an up to 100% improvement. As may be expected, for translational stimuli the reconstructions are rather poor. The Gaussian-like representation could be a valuable aid in population coding with large number of neurons
    corecore