26,728 research outputs found

    Quantum localized modes in capacitively coupled Josephson junctions

    Full text link
    We consider the quantum dynamics of excitations in a system of two capacitively coupled Josephson junctions. Quantum breather states are found in the middle of the energy spectrum of the confined nonescaping states of the system. They are characterized by a strong excitation of one junction. These states perform slow tunneling motion from one junction to the other, while keeping their coherent nature. The tunneling time sensitively depends on the initial excitation energy. By using an external bias as a control parameter, the tunneling time can be varied with respect to the escape time and the experimentally limited coherence time. Thus one can control the flow of quantum excitations between the two junctions.Comment: 5 pages, 3 figures. Improved version, title was slightly changed. Accepted in Europhysics Letters (http://www.iop.org/EJ/journal/EPL

    Quantum breathers in capacitively coupled Josephson junctions: Correlations, number conservation, and entanglement

    Full text link
    We consider the classical and quantum dynamics of excitations in a system of two capacitively coupled Josephson junctions. In the classical case the equations of motion admit discrete breather solutions, which are time periodic and localized predominantly on one of the junctions. In the quantum case breather states are found in the central part of the energy spectrum of the confined nonescaping states of the system. We perform a systematic analysis of their tunneling frequency, site correlations, fluctuations of the number of quanta, and entanglement. Quantum breather states show strong site correlation of quanta and are characterized by a strong excitation of quanta on one junction which perform slow coherent tunneling motion from one junction to the other. They suppress fluctuations of the total number of excited quanta. Quantum breather states are the least entangled states among the group of eigenstates in the same range of the energy spectrum. We describe how quantum breather excitations could be experimentally observed by employing the already developed techniques for quantum information processing using Josephson junctions.Comment: 10 pages, 9 figures. Improved version with further discussions. Accepted in Physical Review

    Coupling the solar surface and the corona: coronal rotation, Alfv\'en wave-driven polar plumes

    Full text link
    The dynamical response of the solar corona to surface and sub-surface perturbations depends on the chromospheric stratification, and specifically on how efficiently these layers reflect or transmit incoming Alfv\'en waves. While it would be desirable to include the chromospheric layers in the numerical simulations used to study such phenomena, that is most often not feasible. We defined and tested a simple approximation allowing the study of coronal phenomena while taking into account a parametrised chromospheric reflectivity. We addressed the problems of the transmission of the surface rotation to the corona and that of the generation of polar plumes by Alfv\'en waves (Pinto et al., 2010, 2011). We found that a high (yet partial) effective chromospheric reflectivity is required to properly describe the angular momentum balance in the corona and the way the surface differential rotation is transmitted upwards. Alfv\'en wave-driven polar plumes maintain their properties for a wide range of values for the reflectivity, but they become bursty (and eventually disrupt) when the limit of total reflection is attained.Comment: Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conferenc

    Chronic hyponatremia in a patient with renal salt wasting and without cerebral disease: relationship between RSW, risk of fractures and cognitive impairment

    Get PDF
    Renal salt wasting syndrome (RSW) is defined as a renal loss of sodium leading to hyponatremia and a decrease in extracellular fluid volume (ECV). Differentiation of this disorder from the syndrome of inappropriate antidiuretic hormone secretion (SIADH), a common cause of hyponatremia, can be difficult because both can present with hyponatremia and concentrated urine with natriuresis. Our clinical case about a 78-year-old woman with a recent fracture of the right femur not only confirms that this syndrome can occur in patients without intracranial pathologies (CT documented), but depicts how the hyponatremia caused by RSW can show a chronic, oscillating course. This is an interesting point of view because it suggests to us to consider RSW in the differential diagnosis of patients with chronic hyponatremia

    Flux-tube geometry and solar wind speed during an activity cycle

    Full text link
    The solar wind speed at 1 AU shows variations in latitude and in time which reflect the evolution of the global background magnetic field during the activity cycle. It is commonly accepted that the terminal wind speed in a magnetic flux-tube is anti-correlated with its expansion ratio, which motivated the definition of widely-used semi-empirical scaling laws relating one to the other. In practice, such scaling laws require ad-hoc corrections. A predictive law based solely on physical principles is still missing. We test whether the flux-tube expansion is the controlling factor of the wind speed at all phases of the cycle and at all latitudes using a very large sample of wind-carrying open magnetic flux-tubes. We furthermore search for additional physical parameters based on the geometry of the coronal magnetic field which have an influence on the terminal wind flow speed. We use MHD simulations of the corona and wind coupled to a dynamo model to provide a large statistical ensemble of open flux-tubes which we analyse conjointly in order to identify relations of dependence between the wind speed and geometrical parameters of the flux-tubes which are valid globally (for all latitudes and moments of the cycle). Our study confirms that the terminal speed of the solar wind depends very strongly on the geometry of the open magnetic flux-tubes through which it flows. The total flux-tube expansion is more clearly anti-correlated with the wind speed for fast rather than for slow wind flows, and effectively controls the locations of these flows during solar minima. Overall, the actual asymptotic wind speeds attained are also strongly dependent on field-line inclination and magnetic field amplitude at the foot-points. We suggest ways of including these parameters on future predictive scaling-laws for the solar wind speed.Comment: Accepted for publicaton on Astronomy & Astrophysic

    Quantum q-breathers in a finite Bose-Hubbard chain: The case of two interacting bosons

    Full text link
    We study the spectrum and eigenstates of the quantum discrete Bose-Hubbard Hamiltonian in a finite one-dimensional lattice containing two bosons. The interaction between the bosons leads to an algebraic localization of the modified extended states in the normal mode space of the noninteracting system. Weight functions of the eigenstates in the space of normal modes are computed by using numerical diagonalization and perturbation theory. We find that staggered states do not compactify in the dilute limit for large chains.Comment: 7 pages, 7 figures. Minor changes and additional comments. Acepted in Physical Review

    Quantum dynamics of localized excitations in a symmetric trimer molecule

    Full text link
    We study the time evolution of localized (local bond) excitations in a symmetric quantum trimer molecule. We relate the dynamical properties of localized excitations such as their spectral intensity and their temporal evolution (survival probability and tunneling of bosons) to their degree of overlap with quantum tunneling pair states. We report on the existence of degeneracy points in the trimer eigenvalue spectrum for specific values of parameters due to avoided crossings between tunneling pair states and additional states. The tunneling of localized excitations which overlap with these degenerate states is suppressed on all times. As a result local bond excitations may be strongly localized forever, similar to their classical counterparts.Comment: 9 pages, 12 figures. Improved version with more discussions. Some figures were replaced for better understanding. Accepted in Phys. Rev.
    • …
    corecore