20,900 research outputs found
Experimental assessment and retrofit of full-scale models of existing RC frames
PSD tests on two full-scale models of existing non-seismic resisting RC frame structures are
described. The testing program covered several aspects, namely assessment of seismic
performance of existing frames without and with infill panels, retrofitting of the bare frame
using Selective Retrofitting techniques, strengthening of the infill panels using shotcrete and
retrofitting of the frame using K-bracing with shear-link dissipators. The main results from
the tests are summarized and discussed and the conclusions are drawn. The tests on the bare
frame have shown how vulnerable are existing structures constructed in the 60’s and the
beneficial effects of infill panels were confirmed from the tests on the infilled frame.
Important improvements, in terms of seismic performance, were achieved by the retrofitting
of the frames. However, it was also confirmed that strengthening of the existing infill panels
in poorly detailed frames may lead to dangerous ‘local’ failures, such as the shear out of the
external columns
Local sensory control of a dexterous end effector
A numerical scheme was developed to solve the inverse kinematics for a user-defined manipulator. The scheme was based on a nonlinear least-squares technique which determines the joint variables by minimizing the difference between the target end effector pose and the actual end effector pose. The scheme was adapted to a dexterous hand in which the joints are either prismatic or revolute and the fingers are considered open kinematic chains. Feasible solutions were obtained using a three-fingered dexterous hand. An algorithm to estimate the position and orientation of a pre-grasped object was also developed. The algorithm was based on triangulation using an ideal sensor and a spherical object model. By choosing the object to be a sphere, only the position of the object frame was important. Based on these simplifications, a minimum of three sensors are needed to find the position of a sphere. A two dimensional example to determine the position of a circle coordinate frame using a two-fingered dexterous hand was presented
A High-Fidelity Realization of the Euclid Code Comparison -body Simulation with Abacus
We present a high-fidelity realization of the cosmological -body
simulation from the Schneider et al. (2016) code comparison project. The
simulation was performed with our Abacus -body code, which offers high force
accuracy, high performance, and minimal particle integration errors. The
simulation consists of particles in a box,
for a particle mass of with $10\
h^{-1}\mathrm{kpc}z=0<0.3\%k<10\
\mathrm{Mpc}^{-1}h0.01\%$. Simulation snapshots are available at
http://nbody.rc.fas.harvard.edu/public/S2016 .Comment: 13 pages, 8 figures. Minor changes to match MNRAS accepted versio
Chemical Evolution of the Galaxy Based on the Oscillatory Star Formation History
We model the star formation history (SFH) and the chemical evolution of the
Galactic disk by combining an infall model and a limit-cycle model of the
interstellar medium (ISM). Recent observations have shown that the SFH of the
Galactic disk violently variates or oscillates. We model the oscillatory SFH
based on the limit-cycle behavior of the fractional masses of three components
of the ISM. The observed period of the oscillation ( Gyr) is reproduced
within the natural parameter range. This means that we can interpret the
oscillatory SFH as the limit-cycle behavior of the ISM. We then test the
chemical evolution of stars and gas in the framework of the limit-cycle model,
since the oscillatory behavior of the SFH may cause an oscillatory evolution of
the metallicity. We find however that the oscillatory behavior of metallicity
is not prominent because the metallicity reflects the past integrated SFH. This
indicates that the metallicity cannot be used to distinguish an oscillatory SFH
from one without oscillations.Comment: 21 pages LaTeX, to appear in Ap
Homogeneous abundance analysis of dwarf, subgiant and giant FGK stars with and without giant planets
We have analyzed high-resolution and high signal-to-noise ratio optical
spectra of nearby FGK stars with and without detected giant planets in order to
homogeneously measure their photospheric parameters, mass, age, and the
abundances of volatile (C, N, and O) and refractory (Na, Mg, Si, Ca, Ti, V, Mn,
Fe, Ni, Cu, and Ba) elements. Our sample contains 309 stars from the solar
neighborhood (up to the distance of 100 pc), out of which 140 are dwarfs, 29
are subgiants, and 140 are giants. The photospheric parameters are derived from
the equivalent widths of Fe I and Fe II lines. Masses and ages come from the
interpolation in evolutionary tracks and isochrones on the HR diagram. The
abundance determination is based on the equivalent widths of selected atomic
lines of the refractory elements and on the spectral synthesis of C_2, CN, C I,
O I, and Na I features. We apply a set of statistical methods to analyze the
abundances derived for the three subsamples. Our results show that: i) giant
stars systematically exhibit underabundance in [C/Fe] and overabundance in
[N/Fe] and [Na/Fe] in comparison with dwarfs, a result that is normally
attributed to evolution-induced mixing processes in the envelope of evolved
stars; ii) for solar analogs only, the abundance trends with the condensation
temperature of the elements are correlated with age and anticorrelated with the
surface gravity, which is in agreement with recent studies; iii) as in the case
of [Fe/H], dwarf stars with giant planets are systematically enriched in [X/H]
for all the analyzed elements, except for O and Ba (the former due to
limitations of statistics), confirming previous findings in the literature that
not only iron has an important relation with the planetary formation; and iv)
giant planet hosts are also significantly overabundant for the same metallicity
when the elements from Mg to Cu are combined together.Comment: 20 pages, 16 figures, 8 table
- …