3,367 research outputs found

    Two-dimensional super Yang-Mills theory investigated with improved resolution

    Get PDF
    In earlier work, N=(1,1) super Yang--Mills theory in two dimensions was found to have several interesting properties, though these properties could not be investigated in any detail. In this paper we analyze two of these properties. First, we investigate the spectrum of the theory. We calculate the masses of the low-lying states using the supersymmetric discrete light-cone (SDLCQ) approximation and obtain their continuum values. The spectrum exhibits an interesting distribution of masses, which we discuss along with a toy model for this pattern. We also discuss how the average number of partons grows in the bound states. Second, we determine the number of fermions and bosons in the N=(1,1) and N=(2,2) theories in each symmetry sector as a function of the resolution. Our finding that the numbers of fermions and bosons in each sector are the same is part of the answer to the question of why the SDLCQ approximation exactly preserves supersymmetry.Comment: 20 pages, 10 figures, LaTe

    Dynamical Casimir effect for gravitons in bouncing braneworlds

    Full text link
    We consider a two-brane system in a five-dimensional anti-de Sitter spacetime. We study particle creation due to the motion of the physical brane which first approaches the second static brane (contraction) and then recedes from it(expansion). The spectrum and the energy density of the generated gravitons are calculated. We show that the massless gravitons have a blue spectrum and that their energy density satisfies the nucleosynthesis bound with very mild constraints on the parameters. We also show that the Kaluza-Klein modes cannot provide the dark matter in an anti-de-Sitter braneworld. However, for natural choices of parameters, backreaction from the Kaluza-Klein gravitons may well become important. The main findings of this work have been published in the form of a Letter [R. Durrer and M. Ruser, Phys. Rev. Lett. 99, 071601 (2007), arXiv:0704.0756].Comment: 40 pages, 34 figures, improved and extended version, matches published versio

    Quantum Mechanics of Dynamical Zero Mode in QCD1+1QCD_{1+1} on the Light-Cone

    Get PDF
    Motivated by the work of Kalloniatis, Pauli and Pinsky, we consider the theory of light-cone quantized QCD1+1QCD_{1+1} on a spatial circle with periodic and anti-periodic boundary conditions on the gluon and quark fields respectively. This approach is based on Discretized Light-Cone Quantization (DLCQ). We investigate the canonical structures of the theory. We show that the traditional light-cone gauge A=0A_- = 0 is not available and the zero mode (ZM) is a dynamical field, which might contribute to the vacuum structure nontrivially. We construct the full ground state of the system and obtain the Schr\"{o}dinger equation for ZM in a certain approximation. The results obtained here are compared to those of Kalloniatis et al. in a specific coupling region.Comment: 19 pages, LaTeX file, no figure

    N=(1,1) super Yang--Mills theory in 1+1 dimensions at finite temperature

    Full text link
    We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.Comment: 16 pages, 8 eps figures, LaTe

    (1+1)-Dimensional Yang-Mills Theory Coupled to Adjoint Fermions on the Light Front

    Get PDF
    We consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z_2, which possesses nontrivial topology. In particular, there are two distinct topological sectors and the physical vacuum state has a structure analogous to a \theta vacuum. We show how this feature is realized in light-front quantization, with periodicity conditions used to regulate the infrared and treating the gauge field zero mode as a dynamical quantity. We find expressions for the degenerate vacuum states and construct the analog of the \theta vacuum. We then calculate the bilinear condensate in the model. We argue that the condensate does not affect the spectrum of the theory, although it is related to the string tension that characterizes the potential between fundamental test charges when the dynamical fermions are given a mass. We also argue that this result is fundamentally different from calculations that use periodicity conditions in x^1 as an infrared regulator.Comment: 20 pages, Revte

    COP 26: Pavilion Proposals

    Get PDF
    There is considerable interest in having a Peatland Pavilion at the up-coming UNFCCC COP26 to be held in Glasgow in November 2021. The purpose of the pavilion would be to provide a focus for discussions about the increasingly recognised importance of peatlands and their role as major global stores of soil carbon but also, in their damaged state, as large sources of carbon emissions. UEL Architecture Masters students were set the task of developing potential designs for such a pavilion with the requirement that it incorporate an installation designed by the artist and UEL lecturer Michael Pinsky. The architectural concept drawn up by Hussein Ail Kassim and Mohammed Patel offers some thought-provoking ideas for such a Peatland Pavilion and thus opens up the debate about what form, both conceptually and architecturally, such a pavilion might take. It is worth highlighting that the themes of the different environment domes envisaged by Hussein and Mohammed can each be related to particular aspects of importance to peatlands

    Diagnostic Technologies to Assess Tissue Perfusion and Cardiorespiratory Performance

    Get PDF
    Introduction Fundamental to the management of critically ill patients is the on-going assessment of both cardiorespiratory status and the adequacy of tissue perfusion. However, the management of the critically ill is also context specifi c. What measures one makes in the operating room, where tight titration of support in the face of surgical trauma is the rule, to fi eld and Emergency Department settings where invasive monitoring is impractical and steady state conditions rarely present, limit the generalizability of statements about specifi c devices and their utility. Furthermore, no monitoring device will improve outcome unless coupled to a treatment, which, itself, improves outcome. The next fi ve years should witness a closer synchrony between monitoring techniques and goals in terms of patient-centered outcomes. Within the context, some truths have sustained clinical scrutiny and speak to consistent treatment logic that should progress more over the next fi ve years, although they will probably not develop into mature applications. Tissue hypoperfusion, or circulatory shock, induces a profound sympathetic response that aims to restore central arterial pressure to sustain cerebral and coronary blood fl ow. The body does this at the expense fi rst of the skin, non-active muscles and renal ultrafi ltration, followed closely by splanchnic vasoconstriction Finally, monitoring and resuscitation are also context specifi c. Differing groups of patients refl ect differing needs and can be assessed well to differing degrees. One must apply differing fi lters to the review of the literature and the application of technologies in assessing tissue perfusion and monitoring techniques based on a variety of criteria. However, here we shall discuss several ne

    Renormalization of Tamm-Dancoff Integral Equations

    Full text link
    During the last few years, interest has arisen in using light-front Tamm-Dancoff field theory to describe relativistic bound states for theories such as QCD. Unfortunately, difficult renormalization problems stand in the way. We introduce a general, non-perturbative approach to renormalization that is well suited for the ultraviolet and, presumably, the infrared divergences found in these systems. We reexpress the renormalization problem in terms of a set of coupled inhomogeneous integral equations, the ``counterterm equation.'' The solution of this equation provides a kernel for the Tamm-Dancoff integral equations which generates states that are independent of any cutoffs. We also introduce a Rayleigh-Ritz approach to numerical solution of the counterterm equation. Using our approach to renormalization, we examine several ultraviolet divergent models. Finally, we use the Rayleigh-Ritz approach to find the counterterms in terms of allowed operators of a theory.Comment: 19 pages, OHSTPY-HEP-T-92-01

    Effects of the components of positive airway pressure on work of breathing during bronchospasm

    Get PDF
    INTRODUCTION: Partial assist ventilation reduces work of breathing in patients with bronchospasm; however, it is not clear which components of the ventilatory cycle contribute to this process. Theoretically, expiratory positive airway pressure (EPAP), by reducing expiratory breaking, may be as important as inspiratory positive airway pressure (IPAP) in reducing work of breathing during acute bronchospasm. METHOD: We compared the effects of 10 cmH(2)O of IPAP, EPAP, and continuous positive airwaypressure (CPAP) on inspiratory work of breathing and end-expiratory lung volume (EELV) in a canine model of methacholine-induced bronchospasm. RESULTS: Methacholine infusion increased airway resistance and work of breathing. During bronchospasm IPAP and CPAP reduced work of breathing primarily through reductions in transdiaphragmatic pressure per tidal volume (from 69.4 ± 10.8 cmH(2)O/l to 45.6 ± 5.9 cmH(2)O/l and to 36.9 ± 4.6 cmH(2)O/l, respectively; P < 0.05) and in diaphragmatic pressure–time product (from 306 ± 31 to 268 ± 25 and to 224 ± 23, respectively; P < 0.05). Pleural pressure indices of work of breathing were not reduced by IPAP and CPAP. EPAP significantly increased all pleural and transdiaphragmatic work of breathing indices. CPAP and EPAP similarly increased EELV above control by 93 ± 16 ml and 69 ± 12 ml, respectively. The increase in EELV by IPAP of 48 ± 8 ml (P < 0.01) was significantly less than that by CPAP and EPAP. CONCLUSION: The reduction in work of breathing during bronchospasm is primarily induced by the IPAP component, and that for the same reduction in work of breathing by CPAP, EELV increases more

    Spontaneous symmetry breaking of (1+1)-dimensional ϕ4\bf \phi^4 theory in light-front field theory (III)

    Full text link
    We investigate (1+1)-dimensional ϕ4\phi^4 field theory in the symmetric and broken phases using discrete light-front quantization. We calculate the perturbative solution of the zero-mode constraint equation for both the symmetric and broken phases and show that standard renormalization of the theory yields finite results. We study the perturbative zero-mode contribution to two diagrams and show that the light-front formulation gives the same result as the equal-time formulation. In the broken phase of the theory, we obtain the nonperturbative solutions of the constraint equation and confirm our previous speculation that the critical coupling is logarithmically divergent. We discuss the renormalization of this divergence but are not able to find a satisfactory nonperturbative technique. Finally we investigate properties that are insensitive to this divergence, calculate the critical exponent of the theory, and find agreement with mean field theory as expected.Comment: 21 pages; OHSTPY-HEP-TH-94-014 and DOE/ER/01545-6
    corecore