92 research outputs found
Lattice and spin excitations in multiferroic h-YMnO3
We used Raman and terahertz spectroscopies to investigate lattice and
magnetic excitations and their cross-coupling in the hexagonal YMnO3
multiferroic. Two phonon modes are strongly affected by the magnetic order.
Magnon excitations have been identified thanks to comparison with neutron
measurements and spin wave calculations but no electromagnon has been observed.
In addition, we evidenced two additional Raman active peaks. We have compared
this observation with the anti-crossing between magnon and acoustic phonon
branches measured by neutron. These optical measurements underly the unusual
strong spin-phonon coupling
An X-Ray Induced Structural Transition in La_0.875Sr_0.125MnO_3
We report a synchrotron x-ray scattering study of the magnetoresistive
manganite La_0.875Sr_0.125MnO_3. At low temperatures, this material undergoes
an x-ray induced structural transition at which charge ordering of Mn^3+ and
Mn^4+ ions characteristic to the low-temperature state of this compound is
destroyed. The transition is persistent but the charge-ordered state can be
restored by heating above the charge-ordering transition temperature and
subsequently cooling. The charge-ordering diffraction peaks, which are
broadened at all temperatures, broaden more upon x-ray irradiation, indicating
the finite correlation length of the charge-ordered state. Together with the
recent reports on x-ray induced transitions in Pr_(1-x)Ca_xMnO_3, our results
demonstrate that the photoinduced structural change is a common property of the
charge-ordered perovskite manganites.Comment: 5 pages, 4 embedded EPS figures; significant changes in the data
analysis mad
Approach to the metal-insulator transition in La(1-x)CaxMnO3 (0<x<.2): magnetic inhomogeneity and spin wave anomaly
We describe the evolution of the static and dynamic spin correlations of
LaCaMnO, for x=0.1, 0.125 and 0.2, where the system evolves
from the canted magnetic state towards the insulating ferromagnetic state,
approaching the metallic transition (x=0.22).
In the x=0.1 sample, the observation of two spin wave branches typical of two
distinct types of magnetic coupling, and of a modulation in the elastic diffuse
scattering characteristic of ferromagnetic inhomogeneities, confirms the static
and dynamic inhomogeneous features previously observed at x0.1. The
anisotropic q-dependence of the intensity of the low-energy spin wave suggests
a bidimensionnal character for the static inhomogeneities. At x=0.125, which
corresponds to the occurence of a ferromagnetic and insulating state, the two
spin wave branches reduce to a single one, but anisotropic. At this
concentration, an anomaly appears at {\bf q}=(1.25,1.25,0), that could be
related to an underlying periodicity, as arising from (1.5,1.5,0)
superstructures.
At x=0.2, the spin-wave branch is isotropic. In addition to the anomaly
observed at q, extra magnetic excitations are observed at larger q, forming
an optical branch. The two dispersion curves suggest an anti-crossing behavior
at some {\bf q'} value, which could be explained by a folding due to an
underlying perodicity involving four cubic lattice spacings
Radiation hardening techniques for rare-earth based optical fibers and amplifiers
Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our
approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern the fiber composition, some possible pre-treatments and the interest of simulation tools used to harden by design the amplifiers.
We showed that adding cerium inside the fiber phosphosilicate-based core strongly decreases the fiber radiation
sensitivity compared to the standard fiber. For both fibers, a pre-treatment with hydrogen permits to enhance again the fiber resistance. Furthermore, simulations tools can also be used to improve the tolerance of the fiber amplifier by
helping identifying the best amplifier configuration for operation in the radiative environment
Epitaxy and magnetotransport of Sr_2FeMoO_6 thin films
By pulsed-laser deposition epitaxial thin films of Sr_2FeMoO_6 have been pre-
pared on (100) SrTiO_3 substrates. Already for a deposition temperature of 320
C epitaxial growth is achieved. Depending on deposition parameters the films
show metallic or semiconducting behavior. At high (low) deposition temperature
the Fe,Mo sublattice has a rock-salt (random) structure. The metallic samples
have a large negative magnetoresistance which peaks at the Curie temperature.
The magnetic moment was determined to 4 mu_B per formula unit (f.u.), in
agreement with the expected value for an ideal ferrimagnetic arrangement. We
found an ordinary Hall coefficient of -6.01x10^{-10} m^3/As at 300 K,
corresponding to an electronlike charge-carrier density of 1.3 per Fe,Mo-pair.
In the semiconducting films the magnetic moment is reduced to 1 mu_B/f.u. due
to disorder in the Fe,Mo sublattice. In low fields an anomalous holelike
contribution dominates the Hall voltage, which vanishes at low temperatures for
the metallic films only.Comment: Institute of Physics, University of Mainz, Germany, 4 pages,
including 5 pictures and 1 Table, submitted to Phys. Rev.
Evidence of anisotropic magnetic polarons in laSrMnO by neutron scattering and comparison with Ca-doped manganites
Elastic and inelastic neutron scattering experiments have been performed in a
LaSrMnO untwinned crystal, which exhibits an
antiferromagnetic canted magnetic structure with ferromagnetic layers.
The elastic small q scattering exhibits a modulation with an anisotropic
q-dependence. It can be pictured by ferromagnetic inhomogeneities or polarons
with a platelike shape, the largest size () and largest
inter-polaron distance ( 38) being within the ferromagnetic
layers. Comparison with observations performed on Ca-doped samples, which show
the growth of the magnetic polarons with doping, suggests that this growth is
faster for the Sr than for the Ca substitution. Below the gap of the spin wave
branch typical of the AF layered magnetic structure, an additional spin wave
branch reveals a ferromagnetic and isotropic coupling, already found in
Ca-doped samples. Its q-dependent intensity, very anisotropic, closely reflects
the ferromagnetic correlations found for the static clusters. All these results
agree with a two-phase electronic segregation occurring on a very small scale,
although some characteristics of a canted state are also observed suggesting a
weakly inhomogeneous state.Comment: 11 pages, 11 figure
The COSPIX mission: focusing on the energetic and obscured Universe
Tracing the formation and evolution of all supermassive black holes,
including the obscured ones, understanding how black holes influence their
surroundings and how matter behaves under extreme conditions, are recognized as
key science objectives to be addressed by the next generation of instruments.
These are the main goals of the COSPIX proposal, made to ESA in December 2010
in the context of its call for selection of the M3 mission. In addition,
COSPIX, will also provide key measurements on the non thermal Universe,
particularly in relation to the question of the acceleration of particles, as
well as on many other fundamental questions as for example the energetic
particle content of clusters of galaxies. COSPIX is proposed as an observatory
operating from 0.3 to more than 100 keV. The payload features a single long
focal length focusing telescope offering an effective area close to ten times
larger than any scheduled focusing mission at 30 keV, an angular resolution
better than 20 arcseconds in hard X-rays, and polarimetric capabilities within
the same focal plane instrumentation. In this paper, we describe the science
objectives of the mission, its baseline design, and its performances, as
proposed to ESA.Comment: 7 pages, accepted for publication in Proceedings of Science, for the
25th Texas Symposium on Relativistic Astrophysics (eds. F. Rieger & C.
van Eldik), PoS(Texas 2010)25
- …