6,222 research outputs found
On the Influence of Magnetic Fields on the Structure of Protostellar Jets
We here present the first results of fully three-dimensional (3-D) MHD
simulations of radiative cooling pulsed (time-variable) jets for a set of
parameters which are suitable for protostellar outflows. Considering different
initial magnetic field topologies in approximate with the
thermal gas, i.e., (i) a longitudinal, and (ii) a helical field, both of which
permeating the jet and the ambient medium; and (iii) a purely toroidal field
permeating only the jet, we find that the overall morphology of the pulsed jet
is not very much affected by the presence of the different magnetic field
geometries in comparison to a nonmagnetic calculation. Instead, the magnetic
fields tend to affect essentially the detailed structure and emission
properties behind the shocks at the head and at the pulse-induced internal
knots, particularly for the helical and toroidal geometries. In these cases, we
find, for example, that the emissivity behind the internal knots can
be about three to four times larger than that of the purely hydrodynamical jet.
We also find that some features, like the nose cones that often develop at the
jet head in 2-D calculations involving toroidal magnetic fields, are smoothed
out or absent in the 3-D calculations.Comment: 13 pages, 3 figures, Accepted by ApJ Letters after minor corrections
(for high resolution figures, see http://www.iagusp.usp.br/~adriano/h.tar
Hall response of interacting bosonic atoms in strong gauge fields: from condensed to FQH states
Interacting bosonic atoms under strong gauge fields undergo a series of phase
transitions that take the cloud from a simple Bose-Einstein condensate all the
way to a family of fractional-quantum-Hall-type states [M. Popp, B. Paredes,
and J. I. Cirac, Phys. Rev. A 70, 053612 (2004)]. In this work we demonstrate
that the Hall response of the atoms can be used to locate the phase transitions
and characterize the ground state of the many-body state. Moreover, the same
response function reveals within some regions of the parameter space, the
structure of the spectrum and the allowed transitions to excited states. We
verify numerically these ideas using exact diagonalization for a small number
of atoms, and provide an experimental protocol to implement the gauge fields
and probe the linear response using a periodically driven optical lattice.
Finally, we discuss our theoretical results in relation to recent experiments
with condensates in artificial magnetic fields [ L. J. LeBlanc, K.
Jimenez-Garcia, R. A. Williams, M. C. Beeler, A. R. Perry, W. D. Phillips, and
I. B. Spielman, Proc. Natl. Acad. Sci. USA 109, 10811 (2012)] and we analyze
the role played by vortex states in the Hall response.Comment: 10 pages, 7 figure
Magnetic Field Effects on the Head Structure of Protostellar Jets
We present the results of 3-D SPMHD numerical simulations of
supermagnetosonic, overdense, radiatively cooling jets. Two initial magnetic
configurations are considered: (i) a helical and (ii) a longitudinal field. We
find that magnetic fields have important effects on the dynamics and structure
of radiative cooling jets, especially at the head. The presence of a helical
field suppresses the formation of the clumpy structure which is found to
develop at the head of purely hydrodynamical jets. On the other hand, a cooling
jet embedded in a longitudinal magnetic field retains clumpy morphology at its
head. This fragmented structure resembles the knotty pattern commonly observed
in HH objects behind the bow shocks of HH jets. This suggests that a strong
(equipartition) helical magnetic field configuration is ruled out at the jet
head. Therefore, if strong magnetic fields are present, they are probably
predominantly longitudinal in those regions. In both magnetic configurations,
we find that the confining pressure of the cocoon is able to excite
short-wavelength MHD K-H pinch modes that drive low-amplitude internal shocks
along the beam. These shocks are not strong however, and it likely that they
could only play a secondary role in the formation of the bright knots observed
in HH jets.Comment: 14 pages, 2 Gif figures, uses aasms4.sty. Also available on the web
page http://www.iagusp.usp.br/preprints/preprint.html. To appear in The
Astrophysical Journal Letter
Influence of flow confinement on the drag force on a static cylinder
The influence of confinement on the drag force on a static cylinder in a
viscous flow inside a rectangular slit of aperture has been investigated
from experimental measurements and numerical simulations. At low enough
Reynolds numbers, varies linearly with the mean velocity and the viscosity,
allowing for the precise determination of drag coefficients and
corresponding respectively to a mean flow parallel and
perpendicular to the cylinder length . In the parallel configuration, the
variation of with the normalized diameter of the
cylinder is close to that for a 2D flow invariant in the direction of the
cylinder axis and does not diverge when . The variation of
with the distance from the midplane of the model reflects the
parabolic Poiseuille profile between the plates for while it
remains almost constant for . In the perpendicular configuration,
the value of is close to that corresponding to a 2D system
only if and/or if the clearance between the ends of the cylinder
and the side walls is very small: in that latter case,
diverges as due to the blockage of the flow. In other cases, the
side flow between the ends of the cylinder and the side walls plays an
important part to reduce : a full 3D description of the flow is
needed to account for these effects
Blending process assessment and employees competencies assessment in very small entities
The ISO/IEC 29110 series aims to provide Very Small Entities (VSEs) with a set of standards based on subsets of existing standards. Process capability determination does not seem suitable for a VSE in terms of return on investment. Our approach proposes to move the viewpoint away from process and to the human resources. We propose a blended assessment model using the ISO/IEC 15504 for the level 1, but based on competency assessment for higher capability levels
- …