6,134 research outputs found

    Evolution of the ISM of Starburst galaxies: the SN heating efficiency

    Full text link
    The interstellar medium heated by SN explosions may acquire an expansion velocity larger than the escape velocity and leave the galaxy through a supersonic wind. SN ejecta are transported out of the galaxies by such winds which thus affect the chemical evolution of the galaxies. The effectiveness of the processes mentioned above depends on the heating efficiency (HE) of the SNe, that is a matter of debate. We have constructed a simple semi-analytic model, considering the essential ingredients of a SB environment which is able to qualitatively trace the thermalisation history of the ISM in a SB region and determine the HE evolution. We find that, as long as the mass-loss rate of the clouds remains larger than the rate at which the SNRs interact one with each other, the SN heating efficiency remains very small, as radiative cooling of the gas dominates. We conclude that the HE value has a time-dependent trend that is sensitive to the initial conditions of the system.Comment: 17 pages, 18 figures, A&A accepte

    On the Influence of Magnetic Fields on the Structure of Protostellar Jets

    Get PDF
    We here present the first results of fully three-dimensional (3-D) MHD simulations of radiative cooling pulsed (time-variable) jets for a set of parameters which are suitable for protostellar outflows. Considering different initial magnetic field topologies in approximate equipartitionequipartition with the thermal gas, i.e., (i) a longitudinal, and (ii) a helical field, both of which permeating the jet and the ambient medium; and (iii) a purely toroidal field permeating only the jet, we find that the overall morphology of the pulsed jet is not very much affected by the presence of the different magnetic field geometries in comparison to a nonmagnetic calculation. Instead, the magnetic fields tend to affect essentially the detailed structure and emission properties behind the shocks at the head and at the pulse-induced internal knots, particularly for the helical and toroidal geometries. In these cases, we find, for example, that the HαH_\alpha emissivity behind the internal knots can be about three to four times larger than that of the purely hydrodynamical jet. We also find that some features, like the nose cones that often develop at the jet head in 2-D calculations involving toroidal magnetic fields, are smoothed out or absent in the 3-D calculations.Comment: 13 pages, 3 figures, Accepted by ApJ Letters after minor corrections (for high resolution figures, see http://www.iagusp.usp.br/~adriano/h.tar

    Studying a dual-species BEC with tunable interactions

    Get PDF
    We report on the observation of controllable spatial separation in a dual-species Bose-Einstein condensate (BEC) with 85^{85}Rb and 87^{87}Rb. Interparticle interactions between the different components can change the miscibility of the two quantum fluids. In our experiments, we clearly observe the immiscible nature of the two simultaneously Bose-condensed species via their spatial separation. Furthermore the 85^{85}Rb Feshbach resonance near 155 G is used to change them between miscible and immiscible by tuning the 85^{85}Rb scattering length. Our apparatus is also able to create 85^{85}Rb condensates with up to 8Ă—1048\times10^4 atoms which represents a significant improvement over previous work

    Multidimensional Hydrodynamical Simulations of radiative cooling SNRs-clouds interactions: an application to Starburst Environments

    Full text link
    In this work we are interested to study the by-products of SNR-clouds in a starburst (SB) system. These interactions can have an important role in the recycling of matter from the clouds to the ISM and vice-versa. In the present work, we have focused our attention on the global effects of the interactions between clouds and SN shock waves in the ISM of SB environments, and performed 3-D radiative cooling hydrodynamical simulations with the adaptive YGUAZU grid code. We have also considered the effects of the photo-evaporation due to the presence of a high number of UV photons from hot stars and supernovae (SNe). The results have shown that, in the presence of radiative cooling, instead of an efficient gas mixing with the diffuse ISM, the interactions cause the fragmentation of the clouds into smaller ones. The results have also revealed that the SNR-clouds interactions are less efficient at producing substantial mass loss from the clouds to the diffuse ISM than mechanisms such as the photo-evaporation caused by the UV flux from the hot stars.Comment: 15 pages, 25 figures. Figures with higher resolution at the page: http://www.astro.iag.usp.br/~dalpino/ Astronomy & Astrophysics accepte
    • …
    corecore