6,134 research outputs found
Evolution of the ISM of Starburst galaxies: the SN heating efficiency
The interstellar medium heated by SN explosions may acquire an expansion
velocity larger than the escape velocity and leave the galaxy through a
supersonic wind. SN ejecta are transported out of the galaxies by such winds
which thus affect the chemical evolution of the galaxies. The effectiveness of
the processes mentioned above depends on the heating efficiency (HE) of the
SNe, that is a matter of debate. We have constructed a simple semi-analytic
model, considering the essential ingredients of a SB environment which is able
to qualitatively trace the thermalisation history of the ISM in a SB region and
determine the HE evolution. We find that, as long as the mass-loss rate of the
clouds remains larger than the rate at which the SNRs interact one with each
other, the SN heating efficiency remains very small, as radiative cooling of
the gas dominates. We conclude that the HE value has a time-dependent trend
that is sensitive to the initial conditions of the system.Comment: 17 pages, 18 figures, A&A accepte
On the Influence of Magnetic Fields on the Structure of Protostellar Jets
We here present the first results of fully three-dimensional (3-D) MHD
simulations of radiative cooling pulsed (time-variable) jets for a set of
parameters which are suitable for protostellar outflows. Considering different
initial magnetic field topologies in approximate with the
thermal gas, i.e., (i) a longitudinal, and (ii) a helical field, both of which
permeating the jet and the ambient medium; and (iii) a purely toroidal field
permeating only the jet, we find that the overall morphology of the pulsed jet
is not very much affected by the presence of the different magnetic field
geometries in comparison to a nonmagnetic calculation. Instead, the magnetic
fields tend to affect essentially the detailed structure and emission
properties behind the shocks at the head and at the pulse-induced internal
knots, particularly for the helical and toroidal geometries. In these cases, we
find, for example, that the emissivity behind the internal knots can
be about three to four times larger than that of the purely hydrodynamical jet.
We also find that some features, like the nose cones that often develop at the
jet head in 2-D calculations involving toroidal magnetic fields, are smoothed
out or absent in the 3-D calculations.Comment: 13 pages, 3 figures, Accepted by ApJ Letters after minor corrections
(for high resolution figures, see http://www.iagusp.usp.br/~adriano/h.tar
Studying a dual-species BEC with tunable interactions
We report on the observation of controllable spatial separation in a
dual-species Bose-Einstein condensate (BEC) with Rb and Rb.
Interparticle interactions between the different components can change the
miscibility of the two quantum fluids. In our experiments, we clearly observe
the immiscible nature of the two simultaneously Bose-condensed species via
their spatial separation. Furthermore the Rb Feshbach resonance near 155
G is used to change them between miscible and immiscible by tuning the
Rb scattering length. Our apparatus is also able to create Rb
condensates with up to atoms which represents a significant
improvement over previous work
Multidimensional Hydrodynamical Simulations of radiative cooling SNRs-clouds interactions: an application to Starburst Environments
In this work we are interested to study the by-products of SNR-clouds in a
starburst (SB) system. These interactions can have an important role in the
recycling of matter from the clouds to the ISM and vice-versa. In the present
work, we have focused our attention on the global effects of the interactions
between clouds and SN shock waves in the ISM of SB environments, and performed
3-D radiative cooling hydrodynamical simulations with the adaptive YGUAZU grid
code. We have also considered the effects of the photo-evaporation due to the
presence of a high number of UV photons from hot stars and supernovae (SNe).
The results have shown that, in the presence of radiative cooling, instead of
an efficient gas mixing with the diffuse ISM, the interactions cause the
fragmentation of the clouds into smaller ones. The results have also revealed
that the SNR-clouds interactions are less efficient at producing substantial
mass loss from the clouds to the diffuse ISM than mechanisms such as the
photo-evaporation caused by the UV flux from the hot stars.Comment: 15 pages, 25 figures. Figures with higher resolution at the page:
http://www.astro.iag.usp.br/~dalpino/ Astronomy & Astrophysics accepte
- …