The interstellar medium heated by SN explosions may acquire an expansion
velocity larger than the escape velocity and leave the galaxy through a
supersonic wind. SN ejecta are transported out of the galaxies by such winds
which thus affect the chemical evolution of the galaxies. The effectiveness of
the processes mentioned above depends on the heating efficiency (HE) of the
SNe, that is a matter of debate. We have constructed a simple semi-analytic
model, considering the essential ingredients of a SB environment which is able
to qualitatively trace the thermalisation history of the ISM in a SB region and
determine the HE evolution. We find that, as long as the mass-loss rate of the
clouds remains larger than the rate at which the SNRs interact one with each
other, the SN heating efficiency remains very small, as radiative cooling of
the gas dominates. We conclude that the HE value has a time-dependent trend
that is sensitive to the initial conditions of the system.Comment: 17 pages, 18 figures, A&A accepte