71 research outputs found

    International Space Station Future Correlation Analysis Improvements

    Get PDF
    Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study

    Comparative Evaluation of Technologies and Data Sources to Capture Travel Time at Section-Level on Urban Streets

    Get PDF
    This paper focuses on capturing section-level (a signalized intersection to the next) travel times on urban street segments using Bluetooth detectors as well as from INRIX data source and comparing it with manual and Global Positioning System (GPS) floating test car methods (test car with a trained technician and GPS unit to capture travel time between selected points) for each travel time run. Results obtained indicate that section-level travel time data captured using Bluetooth detectors on urban street segments are less accurate and not dependable when compared with GPS unit and INRIX. The role of various on-network characteristics on the percentage difference in travel time from GPS unit, INRIX, and Bluetooth detectors was also examined

    CAF01 Potentiates Immune Responses and Efficacy of an Inactivated Influenza Vaccine in Ferrets

    Get PDF
    Trivalent inactivated vaccines (TIV) against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6′-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines

    Susceptibility of Pancreatic Beta Cells to Fatty Acids Is Regulated by LXR/PPARα-Dependent Stearoyl-Coenzyme A Desaturase

    Get PDF
    Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARα-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRβ-/- and LXRαβ-/-), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARα agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARα agonists favors their desaturation and subsequent incorporation in neutral lipids

    Assessing the Effects of Agronomic Management Practices on Soybean (Glycine max L.) Post-Grain Harvest Residue Quality in the Lower Mississippi Delta

    No full text
    Livestock producers often resort to either baling or grazing of crop residues due to high hay prices and reduced supply of other forages and silage in the markets. Soil-water-crop management practices can affect residue nutrient qualities for its use as cattle feedstock. A two-year study (2018–2019) was conducted to investigate the effects of irrigation (AI, all row-irrigation; ARI, alternate row irrigation; and RF, rainfed) and planting pattern, PP (SR, single row; and TR, twin-row) on soybean (maturity group IV cv. 31RY45 Dyna-Gro) post-grain harvest residue quality such as crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), net energy for maintenance (NEM), net energy for gain (NEG), net energy for lactation (NEL), total digestible nutrients (TDN), and relative feed value (RFV). Irrigation has a significant effect on CP, ADF, NDF, and TDN while PP affected only NDF. All the above parameters were significantly affected except NEM by the contrasting climate conditions, particularly during July through August coinciding with early crop reproductive stages and maturity. The RFV values ranged from 70.4 to 81.6 and this lower range was attributable to nutrient translocation to seeds and higher lignification during plant senescence towards the grain filling stage of the crop as good quality hay records over 120 RFV. These results indicate that both irrigation and weather during soybean seed development can alter post-grain harvest residue quality parameters, thereby playing critical roles in its RFV

    Assessing the Effects of Agronomic Management Practices on Soybean (<i>Glycine max</i> L.) Post-Grain Harvest Residue Quality in the Lower Mississippi Delta

    No full text
    Livestock producers often resort to either baling or grazing of crop residues due to high hay prices and reduced supply of other forages and silage in the markets. Soil-water-crop management practices can affect residue nutrient qualities for its use as cattle feedstock. A two-year study (2018–2019) was conducted to investigate the effects of irrigation (AI, all row-irrigation; ARI, alternate row irrigation; and RF, rainfed) and planting pattern, PP (SR, single row; and TR, twin-row) on soybean (maturity group IV cv. 31RY45 Dyna-Gro) post-grain harvest residue quality such as crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), net energy for maintenance (NEM), net energy for gain (NEG), net energy for lactation (NEL), total digestible nutrients (TDN), and relative feed value (RFV). Irrigation has a significant effect on CP, ADF, NDF, and TDN while PP affected only NDF. All the above parameters were significantly affected except NEM by the contrasting climate conditions, particularly during July through August coinciding with early crop reproductive stages and maturity. The RFV values ranged from 70.4 to 81.6 and this lower range was attributable to nutrient translocation to seeds and higher lignification during plant senescence towards the grain filling stage of the crop as good quality hay records over 120 RFV. These results indicate that both irrigation and weather during soybean seed development can alter post-grain harvest residue quality parameters, thereby playing critical roles in its RFV

    Stearoyl CoA desaturase 1 is elevated in obesity but protects against fatty acid-induced skeletal muscle insulin resistance in vitro

    No full text
    AIMS/HYPOTHESIS: Stearoyl CoA desaturase 1 (SCD1) is implicated in mediating obesity and insulin resistance. Paradoxically, SCD1 converts saturated fatty acids, the lipid species implicated in mediating insulin resistance, to monounsaturated fatty acids. The aim of the present study was to assess the molecular mechanisms that implicate SCD1 in the aetiology of fatty acid-induced insulin resistance. METHODS: SCD1 protein was transiently decreased or increased in rat L6 skeletal muscle myotubes using SCD1 short interfering RNA (siRNA) or liposome-mediated transfection of pcDNA3.1/Hygro-mSCD1, respectively. RESULTS: Reducing SCD1 protein resulted in marked esterification of exogenous fatty acids into diacylglycerol (DAG) and ceramide. Insulin-stimulated Akt activity and phosphorylation and 2-deoxyglucose uptake were reduced with SCD1 siRNA. Exposure of L6 myotubes to palmitate abolished insulin-stimulated glucose uptake in both control and SCD1 siRNA myotubes. Overexpression of SCD1 resulted in triacylglycerol esterification but attenuated ceramide and DAG accumulation and protected myotubes from fatty acid-induced insulin resistance. CONCLUSIONS/INTERPRETATION: SCD1 protects from cellular toxicity in L6 myotubes by preventing excessive accumulation of bioactive lipid metabolites
    • …
    corecore