579 research outputs found

    Modelling lubricated revolute joints in multibody mechanical systems

    Get PDF
    This work deals with the modelling of lubricated revolute joints in multibody mechanical systems. In most machines and mechanisms, the joints are designed to operate with some lubricant fluid. The high pressures generated in the lubricant fluid act to keep the journal and the bearing apart. Moreover, the thin film formed by lubricant reduces friction and wear, provides load capacity and adds damping to dissipate undesirable mechanical vibrations. In the dynamic analysis of journal–bearings, the hydrodynamic forces, which include both squeeze and wedge effects, produced by the lubricant fluid oppose the journal motion. These forces are obtained by integrating the pressure distribution evaluated with the aid of Reynolds’ equation written for the dynamic regime. The hydrodynamic forces are nonlinear functions of journal centre position and velocity relative to the bearing centre. In a simple way, the hydrodynamic forces built up by the lubricant fluid are evaluated from the state of variable of the system and included into the equations of motion of the mechanical system. Results for an elementary slider–crank mechanism, in which a lubricated revolute joint connects the connecting rod and slider, are used to discuss the assumptions and procedures adopted.Fundação para a Ciência e a Tecnologia (FCT

    Patients with mast cell activation symptoms and elevated baseline serum tryptase level have unique bone marrow morphology

    Get PDF
    Background: Patients with mast cell (MC) activation symptoms and elevated baseline serum tryptase level (MCAS-T) may not necessarily have a clonal MC disorder. Many are diagnosed with hereditary a-tryptasemia (HaT), a genetic trait characterized by autosomal dominant inheritance of multiple copies of TPSAB1 encoding a-tryptase and increased risk for severe anaphylaxis. Objective: The aim of our study was to identify and characterize bone marrow MC histopathologic features specific for MCAS-T. Methods: A total of 43 patients with MCAS-T underwent evaluation, including bone marrow biopsy, for a MC disorder. The results of the work-up for clonal MC disorders such as systemic mastocytosis and monoclonal MC activation syndrome were negative. Bone marrow MC histopathology was reviewed to identify characteristic features of MCAS-T. A subgroup of patients was available for tryptase genotyping. Results: Patients with MCAS-T showed unique morphologic and histologic features when compared with controls. MCs were larger (P < .01), hypogranular (P < .01), frequently detected in paratrabecular (P < .05) and perivascular (P < .01) locations, and associated with bone marrow eosinophilia (P < .01). A total of 10 patients who were available for tryptase genotyping were all confirmed to have HaT. This subgroup was representative of the larger MCAS-T cohort. Conclusion: We report unique bone marrow MC phenotypic and histopathologic changes in patients with MCAS-T. These morphologic changes are associated with an elevated tryptase level that has been confirmed to be caused by HaT in all patients available for testing. (J Allergy Clin Immunol 2021;147:1497-501.

    Eccrine porocarcinoma of the head: An important differential diagnosis in the elderly patient

    Get PDF
    Background: Eccrine porocarcinoma is a rare malignant tumor of the sweat gland, characterized by a broad spectrum of clinicopathologic presentations. Surprisingly, unlike its benign counterpart eccrine poroma, eccrine porocarcinoma is seldom found in areas with a high density of eccrine sweat glands, like the palms or soles. Instead, eccrine porocarcinoma frequently occurs on the lower extremities, trunk and abdomen, but also on the head, resembling various other skin tumors, as illustrated in the patients described herein. Observations: We report 5 cases of eccrine porocarcinoma of the head. All patients were initially diagnosed as having epidermal or melanocytic skin tumors. Only after histopathologic examination were they classified as eccrine porocarcinoma, showing features of epithelial tumors with abortive ductal differentiation. Characteristic clinical, histopathologic and immunohistochemical findings of eccrine porocarcinomas are illustrated. Conclusion: Eccrine porocarcinomas are potentially fatal adnexal malignancies, in which extensive metastatic dissemination may occur. Porocarcinomas are commonly overlooked, or misinterpreted as squamous or basal cell carcinomas as well as other common malignant and even benign skin tumors. Knowledge of the clinical pattern and histologic findings, therefore, is crucial for an early therapeutic intervention, which can reduce the risk of tumor recurrence and serious complications. Copyright (c) 2008 S. Karger AG, Basel

    Static condensation optimal port/interface reduction and error estimation for structural health monitoring

    Get PDF
    Having the application in structural health monitoring in mind, we propose reduced port spaces that exhibit an exponential convergence for static condensation procedures on structures with changing geometries for instance induced by newly detected defects. Those reduced port spaces generalize the port spaces introduced in [K. Smetana and A.T. Patera, SIAM J. Sci. Comput., 2016] to geometry changes and are optimal in the sense that they minimize the approximation error among all port spaces of the same dimension. Moreover, we show numerically that we can reuse port spaces that are constructed on a certain geometry also for the static condensation approximation on a significantly different geometry, making the optimal port spaces well suited for use in structural health monitoring

    Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems

    Get PDF
    We present the results of the first application in the naval architecture field of a methodology based on active subspaces properties for parameter space reduction. The physical problem considered is the one of the simulation of the hydrodynamic flow past the hull of a ship advancing in calm water. Such problem is extremely relevant at the preliminary stages of the ship design, when several flow simulations are typically carried out by the engineers to assess the dependence of the hull total resistance on the geometrical parameters of the hull, and others related with flows and hull properties. Given the high number of geometric and physical parameters which might affect the total ship drag, the main idea of this work is to employ the active subspaces properties to identify possible lower dimensional structures in the parameter space. Thus, a fully automated procedure has been implemented to produce several small shape perturbations of an original hull CAD geometry, in order to exploit the resulting shapes and to run high fidelity flow simulations with different structural and physical parameters as well, and then collect data for the active subspaces analysis. The free form deformation procedure used to morph the hull shapes, the high fidelity solver based on potential flow theory with fully nonlinear free surface treatment, and the active subspaces analysis tool employed in this work have all been developed and integrated within SISSA mathLab as open source tools. The contribution will also discuss several details of the implementation of such tools, as well as the results of their application to the selected target engineering problem

    Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry

    Get PDF
    Fixed, paraffin-embedded (FPE) tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1) in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC) stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors), but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of patients for clinical trials

    Slutsky Matrix Norms and Revealed Preference Tests of Consumer Behaviour

    Full text link
    Given any observed finite sequence of prices, wealth and demand choices, we characterize the relation between its underlying Slutsky matrix norm (SMN) and some popular discrete revealed preference (RP) measures of departures from rationality, such as the Afriat index. We show that testing rationality in the SMN aproach with finite data is equivalent to testing it under the RP approach. We propose a way to "summarize" the departures from rationality in a systematic fashion in finite datasets. Finally, these ideas are extended to an observed demand with noise due to measurement error; we formulate an appropriate modification of the SMN approach in this case and derive closed-form asymptotic results under standard regularity conditions

    Spatial rigid-multi-body systems with lubricated spherical clearance joints : modeling and simulation

    Get PDF
    The dynamic modeling and simulation of spatial rigid-multi-body systems with lubricated spherical joints is the main purpose of the present work. This issue is of paramount importance in the analysis and design of realistic multibody mechanical systems undergoing spatial motion. When the spherical clearance joint is modeled as dry contact; i.e., when there is no lubricant between the mechanical elements which constitute the joint, a body-to-body (typically metal-to-metal) contact takes place. The joint reaction forces in this case are evaluated through a Hertzian-based contact law. A hysteretic damping factor is included in the dry contact force model to account for the energy dissipation during the contact process. The presence of a fluid lubricant avoids the direct metal-to-metal contact. In this situation, the squeeze film action, due to the relative approaching motion between the mechanical joint elements, is considered utilizing the lubrication theory associated with the spherical bearings. In both cases, the intra-joint reaction forces are evaluated as functions of the geometrical, kinematical and physical characteristics of the spherical joint. These forces are then incorporated into a standard formulation of the system’s governing equations of motion as generalized external forces. A spatial four bar mechanism that includes a spherical clearance joint is considered here as example. The computational simulations are carried out with and without the fluid lubricant, and the results are compared with those obtained when the system is modeled with perfect joints only. From the general results it is observed that the system’s performance with lubricant effect presents fewer peaks in the kinematic and dynamic outputs, when compared with those from the dry contact joint model.Fundação para a Ciência e a Tecnologia (FCT

    Approximation of integral operators using product-convolution expansions

    Get PDF
    International audienceWe consider a class of linear integral operators with impulse responses varying regularly in time or space. These operators appear in a large number of applications ranging from signal/image processing to biology. Evaluating their action on functions is a computationally intensive problem necessary for many practical problems. We analyze a technique called product-convolution expansion: the operator is locally approximated by a convolution, allowing to design fast numerical algorithms based on the fast Fourier transform. We design various types of expansions, provide their explicit rates of approximation and their complexity depending on the time varying impulse response smoothness. This analysis suggests novel wavelet based implementations of the method with numerous assets such as optimal approximation rates, low complexity and storage requirements as well as adaptivity to the kernels regularity. The proposed methods are an alternative to more standard procedures such as panel clustering, cross approximations, wavelet expansions or hierarchical matrices
    • …
    corecore