57 research outputs found

    On the Nonlinearity of Response to Level of Service Variables in Travel Mode Choice Models

    No full text
    It is important to accommodate variations in responsiveness (or response heterogeneity) to level of service attributes in travel mode choice models. This response heterogeneity may be disaggregated into a systematic (observed) component and a random (unobserved) component. Earlier studies have typically considered systematic response heterogeneity by examining differences in LOS response sensitivities due to individual demographic and other attributes. In this research, our emphasis is on another element of systematic response heterogeneity - systematic response heterogeneity originating from nonlinear responsiveness to LOS attributes. Specifically, we consider both the components of systematic response heterogeneity (due to individual characteristics and due to nonlinear responsiveness) as well as unobserved response heterogeneity at the same time, and compare the empirical results of models that assume a traditional linear responsiveness to LOS attributes with those that adopt a nonlinear responsiveness to LOS attributes. The empirical analysis uses the Austin Commuter Stated Preference Survey data to examine commute travel mode choice. The nonlinear specifications for travel time and travel time unreliability indicate that commuters place a small value to travel time, and a very high value to travel time reliability, in the first 15 minutes. Beyond 15 minutes, however, the valuation of travel time increases rapidly, while that of travel time reliability drops dramatically. In addition to clearly indicating the nonlinear nature of responsiveness to travel time and travel time unreliability, the results indicate that ignoring nonlinear responsiveness leads, in the current empirical context, to (a) biased parameter estimates, (b) an inflated estimate of unobserved heterogeneity, (c) counterintuitive signs on the LOS variables for a high fraction of individuals, (d) inaccurate estimates of willingness-to-pay measures, and (e) loss in model fit.Civil, Architectural, and Environmental Engineerin

    Pooling Data From Fatality Analysis Reporting System (Fars) And Generalized Estimates System (Ges) To Explore The Continuum Of Injury Severity Spectrum

    No full text
    Fatality Analysis Reporting System (FARS) and Generalized Estimates System (GES) data are most commonly used datasets to examine motor vehicle occupant injury severity in the United States (US). The FARS dataset focuses exclusively on fatal crashes, but provides detailed information on the continuum of fatality (a spectrum ranging from a death occurring within thirty days of the crash up to instantaneous death). While such data is beneficial for understanding fatal crashes, it inherently excludes crashes without fatalities. Hence, the exogenous factors identified as critical in contributing (or reducing) to fatality in the FARS data might possibly offer different effects on non-fatal crash severity levels when a truly random sample of crashes is considered. The GES data fills this gap by compiling data on a sample of roadway crashes involving all possible severity consequences providing a more representative sample of traffic crashes in the US. FARS data provides a continuous timeline of the fatal occurrences from the time to crash - as opposed to considering all fatalities to be the same. This allows an analysis of the survival time of victims before their death. The GES, on the other hand, does not offer such detailed information except identifying who died in the crash. The challenge in obtaining representative estimates for the crash population is the lack of readily available appropriate data that contains information available in both GES and FARS datasets. One way to address this issue is to replace the fatal crashes in the GES data with fatal crashes from FARS data thus augmenting the GES data sample with a very refined categorization of fatal crashes. The sample thus formed, if statistically valid, will provide us with a reasonable representation of the crash population. This paper focuses on developing a framework for pooling of data from FARS and GES data. The validation of the pooled sample against the original GES sample (unpooled sample) is carried out through two methods: (1) univariate sample comparison and (2) econometric model parameter estimate comparison. The validation exercise indicates that parameter estimates obtained using the pooled data model closely resemble the parameter estimates obtained using the unpooled data. After we confirm that the differences in model estimates obtained using the pooled and unpooled data are within an acceptable margin, we also simultaneously examine the whole spectrum of injury severity on an eleven point ordinal severity scale - no injury, minor injury, severe injury, incapacitating injury, and 7 refined categories of fatalities ranging from fatality after 30 days to instant death - using a nationally representative pooled dataset. The model estimates are augmented by conducting elasticity analysis to illustrate the applicability of the proposed framework

    Analyzing The Continuum Of Fatal Crashes: A Generalized Ordered Approach

    No full text
    Abstract In the United States, safety researchers have focused on examining fatal crashes (involving at least one fatally injured vehicle occupant) by using Fatality Analysis Reporting System (FARS) dataset. FARS database compiles crashes if at least one person involved in the crash dies within 30 consecutive days from the time of crash along with the exact timeline of the fatal occurrence. Previous studies using FARS dataset offer many useful insights on what factors affect crash related fatality, particularly in the context of fatal vs. non-fatal injury categorization. However, there is one aspect of fatal crashes that has received scarce attention in the traditional safety analysis. The studies that dichotomize crashes into fatal vs. non-fatal groups assume that all fatal crashes in the FARS dataset are similar. Keeping all else same, a fatal crash that results in an immediate fatality is clearly much more severe than another crash that leads to fatality after several days. Our study contributes to continuing research on fatal crashes. Specifically, rather than homogenizing all fatal crashes as the same, our study analyzes the fatal injury from a new perspective by examining fatality as a continuous spectrum based on survival time ranging from dying within 30 days of crash to dying instantly (as reported in the FARS data). The fatality continuum is represented as a discrete ordered dependent variable and analyzed using the mixed generalized ordered logit (MGOL) model. By doing so, we expect to provide a more accurate estimation of critical crash attributes that contribute to death. In modeling the discretized fatality timeline, the Emergency Medical Service (EMS) response time variable is an important determinant. However, it is possible that the EMS response time and fatality timeline are influenced by the same set of observed and unobserved factors, generating endogeneity in the outcome variable of interest. Hence, we propose to estimate a two equation model that comprises of a regression equation for EMS response time and MGOL for fatality continuum with residuals from the EMS model to correct for endogeneity bias on the effect of exogenous factors on the timeline of death. Such research attempts are useful in determining what factors affect the time between crash occurrence and time of death so that safety measures can be implemented to prolong survival. The model estimates are augmented by conducting elasticity analysis to highlight the important factors affecting time-to-death process
    corecore