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ABSTRACT 

Many consumer choice situations are characterized by the simultaneous demand for multiple 

alternatives that are imperfect substitutes for one another, along with a continuous quantity 

dimension for each chosen alternative. To model such multiple discrete-continuous choices, most 

multiple discrete-continuous models in the literature use an additively-separable utility function, 

with the assumption that the marginal utility of one good is independent of the consumption of 

another good. In this paper, we develop model formulations for multiple discrete-continuous 

choices that allow a non-additive utility structure, and accommodate rich substitution structures 

and complementarity effects in the consumption patterns. Specifically, three different non-

additive utility formulations are proposed based on alternative specifications and interpretations 

of stochasticity: (1) The deterministic utility random maximization (DU-RM) formulation, which 

considers stochasticity due to the random mistakes consumers make during utility maximization; 

(2) The random utility deterministic maximization (RU-DM) formulation, which considers 

stochasticity due to the analyst’s errors in characterizing the consumer’s utility function; and (3) 

The random utility random maximization (RU-RM) formulation, which considers both analyst’s 

errors and consumer’s mistakes within a unified framework. When applied to the consumer 

expenditure survey data in the United States, the proposed non-additively separable utility 

formulations perform better than the additively separable counterparts, and suggest the presence 

of substitution and complementarity patterns in consumption. 

 

Keywords: Discrete-continuous system, multiple discreteness, Karush-Kuhn-Tucker demand 

systems, mixed discrete choice, random utility maximization, non-additively separable utility 

form, transportation expenditure. 
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1. INTRODUCTION 

Multiple discrete-continuous (MDC) choice situations are quite ubiquitous in consumer decision-

making, and constitute a generalization of the more classical single discrete-continuous choice 

situation. Examples of MDC contexts include the participation decision of individuals in 

different types of activities over the course of a day and the duration in the chosen activity types 

(see Bhat, 2005, Chikaraishi et al., 2010, and Wang and Li, 2011), household holdings of 

multiple vehicle body/fuel types and the annual vehicle miles of travel on each vehicle (Ahn et 

al., 2008), and consumer purchase of multiple brands within a product category and the quantity 

of purchase (Kim et al., 2002), . 

There are several differences between the traditional single discrete choice (SDC) and 

MDC utility frameworks, primarily originating in the functional form of the utility function. 

MDC models typically assume imperfect substitution among alternatives based on a more 

general utility function than the SDC case, which assumes perfect substitution among 

alternatives. But, at a basic level, the choice process faced by the consumer in both the SDC and 

MDC situations may be formulated from a microeconomic consumer utility maximization theory 

perspective as follows: 
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where )(xU  is the utility function corresponding to a consumption vector x , kp  is the unit price 

of good k, and E  is the total expenditure. Note that the formulation above is equally applicable 

to cases with complete or incomplete demand systems (that is, the modeling of demand for all 

commodities that enter preferences or the modeling of demand for a subset of commodities that 

enter preferences).1  

                                                 
1 A complete demand system involves the modeling of the demands of all consumption goods that exhaust the 
consumption space of consumers. However, complete demand systems require data on prices and consumptions of 
all commodity/service items, and can be impractical when studying consumptions in finely defined 
commodity/service categories. Thus, it is common to use an incomplete demand system, typically in the form of a 
two stage budgeting approach or in the form of the use of a Hicksian composite commodity assumption. In the 
former two stage budgeting approach, separabilility of preferences is invoked, and the allocation is pursued in two 
independent stages. The first stage entails allocation between a limited number of broad groups of consumption 
items, followed by the incomplete demand system allocation of the group expenditure to elementary 
commodities/services within the broad consumption group of primary interest to the analyst (the elementary 
commodities/services in the broad group of primary interest are commonly referred to as “inside” goods). The 
plausibility of such a two stage budgeting approach requires strong homothetic preferences within each broad group 
and strong separability of preferences, or the less restrictive conditions of weak separability of preferences and the 
price index for each broad group not being too sensitive to changes in the utility function (see Menezes et al., 2005). 
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The functional form of the utility function )(xU  determines the characteristics of, and 

the solution for, the constrained utility maximization formulation of Equation (1). More 

importantly, the functional form determines whether the formulation corresponds to an SDC or 

an MDC model. For instance, Hanemann (1984) considers the “perfect substitutes” case when he 

writes the utility function )(xU  as follows (Hanemann considers an essential outside good, 

which we will assume to be good 1): 
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where *U  is a bivariate utility function and kψ  ( Kk ,...,3,2= ) represents the quality index 

specific to each inside good k. This functional form assures that, in addition to the outside good 

which is consumed, exactly one inside good ( Kk ,...,3,2= ) is also consumed. Hanemann (1984) 

refers to this as the “extreme corner solution”.2 As is typical in SDC analysis, rather than 

deriving the consumption function based on solving the constrained maximization problem of the 

direct utility function in Equation (2), Hanemann assumes a functional form for the indirect 

utility function, introduces random stochasticity into the formulation, and then derives 

expressions for the probabilities of the discrete and continuous choices. Chiang (1991) and 
                                                                                                                                                             
In the Hicksian composite commodity approach, the analyst assumes that the prices of elementary goods within each 
broad group of consumption items vary proportionally. Then, one can replace all the elementary alternatives within 
each broad group (that is not of primary interest) by a single composite alternative representing the broad group. The 
analysis proceeds then by considering the composite goods as “outside” goods and considering consumption in these 
outside goods as well as the “inside” goods representing the consumption group of main interest to the analyst. It is 
common in practice in this Hicksian approach to include a single outside good with the inside goods. If this 
composite outside good is not essential, then the consumption formulation is similar to that of a complete demand 
system. If this composite outside good is essential, then the formulation needs minor revision to accommodate the 
essential nature of the outside good. Please refer to von Haefen (2010) for a discussion of the Hicksian approach and 
other incomplete demand system approaches such as the one proposed by Epstein (1982) that we do not consider 
here. In this paper, we will consider incomplete demand systems in the form of the second stage of a two stage 
incomplete demand system with a finite, positive total budget as obtained from the first stage (for presentation ease, 
we will refer to this case as the “inside goods only” case in which at least one “inside” good has to be consumed and 
there are no essential outside goods) or in the form of a Hicksian composite approach with a single outside good that 
is essential and no requirement that at least one of the inside goods has to be consumed (for presentation ease, we 
will refer to this case simply as the “essential outside good” case; if the outside good is non-essential, the 
formulation becomes identical to the case of the “inside goods only” case, while if there are multiple outside goods, 
the situation is a very simple extension of the formulations presented here depending on whether the outside goods 
are all essential, all non-essential, or some combination of essential and non-essential). Finally, a complete demand 
system takes the same formulation as the “inside goods only” formulation.  
 

2 Of course, the utility function in Equation (2) is easily modified for the case when there is no outside good, and 
only one of the inside goods is consumed. In this case, the utility function becomes .)(

2∑ =
=

K
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corresponds to the case of the traditional discrete choice model, since all the expenditure is on the chosen good and 
so the continuous component drops out. 
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Chintagunta (1993) extend Hanemann’s SDC formulation to include the possibility of no inside 

goods being selected for consumption by including a “reservation price”. If the quality-adjusted 

prices of all the inside goods exceed the reservation price, no inside goods are selected, but if the 

quality adjusted prices of one or more of the inside goods are below the reservation price, an 

inside good is selected based on Hanemann’s framework. The demand functions for the 

continuous components of choice are obtained using Roy’s identity (Roy, 1947). 

As indicated above, SDC analysis is usually undertaken using an indirect utility 

approach, based on the argument that it is usually difficult and, often intractable, to adopt a direct 

utility approach for estimating parameters and obtaining analytic expressions for demand 

functions. However, as clearly articulated by Bunch (2009), the direct utility approach has the 

advantage of being closely tied to an underlying behavioral theory, so that interpretation of 

parameters in the context of consumer preferences is clear and straightforward. Further, the 

direct utility approach provides insights into identification issues. Of course, when one moves to 

the MDC models, the indirect utility approach all but falls apart because multiple inside goods 

can be selected for consumption and non-negativity of the consumption vector must be 

guaranteed (see Wales and Woodland, 1983). Thus, in addition to conceptual and behavioral 

advantages, it has been the norm to examine MDC situations using the direct utility approach, 

especially because, through clever stochastic term distribution assumptions, one can obtain a 

closed form for the probability of the consumption patterns of goods. 

Earlier direct utility-based MDC models have their origins in Hanemann’s (1978) and 

Wales and Woodland’s (1983) Karush-Kuhn-Tucker (KKT) first-order conditions approach for 

constrained random utility maximization. This approach assumes the utility function )(xU  to be 

random (from the analyst’s perspective) over the population, and then derives the consumption 

vector for the random utility specification subject to the linear budget constraint by using the 

KKT conditions for constrained optimization. Several recent developments have sparked a 

renewed interest in applying the KKT-based approach to modeling MDC choices. A 

representative example is Bhat’s (2008) multiple discrete-continuous extreme value (MDCEV) 

model formulation that provides a simple and parsimonious approach to model MDC choices. 

To date, most MDC modeling frameworks, including the MDCEV model, have adopted 

an additively separable utility function, which assumes that the marginal utility of one good is 

independent of the consumption of another good. This assumption has at least two important 
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implications. First, the marginal rate of substitution between any pair of goods is dependent only 

on the quantities of the two goods in the pair, and independent of the quantity of other goods. As 

indicated by Pollak and Wales (1992), this has consequences on the preferences directly. For 

example, let there be three food items: milk ( 1x ), cornflakes ( 2x ), and raisin bran ( 3x ). Consider 

an individual who tends to have milk and cornflakes, or milk and raisin bran, but not milk alone. 

Such an individual may prefer the triplet [20,1,20] over [10,10,20], but may also prefer [10,10,1] 

over [20,1,1]. This violates additive utility, because, if the individual prefers [20,1,20] over 

[10,10,20], she/he must prefer [20,1, 3x ] over [10,10, 3x ] according to additive utility. Then, the 

additively separable assumption substantially reduces the ability of the utility function to 

accommodate rich and flexible substitution patterns. Second, the specification of a quasi-concave 

and increasing utility function with respect to the consumption of goods, along with additive 

utility across goods, immediately implies that goods cannot be inferior and cannot be 

complements (i.e., they must be strict substitutes; see Deaton and Muellbauer, 1980, page 139). 

Besides, additive utility structure makes it difficult to recognize that consumers might have a 

preference for certain specific combinations of alternatives. Overall, additively separable utility 

functions are substantially restricted in their ability to accommodate flexible dependencies (e.g., 

complementarity and substitution) in the consumption of different goods. 

The literature on MDC models that adopt a non-additively separable utility structure is 

relatively limited, and research in this area has arisen only in the last five years. Song and 

Chintagunta (2007) and Mehta (2007) accommodated complementarity and substitution effects 

in a MDC utility function to model purchase quantity decisions of house cleaning products. 

However, because of the model complexity, both studies use an indirect utility approach instead 

of a direct utility approach. Later, Lee and Allenby (2009) proposed a direct utility approach that 

incorporates a non-additively separable utility function. For this purpose, they grouped goods in 

categories assuming that goods in the same category are substitutes, while goods in different 

categories are complements. However, their modeling framework does not allow consumers to 

choose multiple goods within each category. Lee et al. (2010) proposed a direct utility model for 

measuring asymmetric complementarity. Their model formulation accommodates both inside 

and outside goods, but it was developed for the simple case of two goods. Vásquez-Lavín and 

Hanemann (2008) extended Bhat’s (2008) additively separable linear form allowing the marginal 

utility of each good to be dependent on the level of consumption of other goods. However, as we 
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discuss in Section 2, their utility function can become theoretically inconsistent for some 

combinations of the parameters. 

 

1.1. Paper Objectives and Structure 

The objective of this paper is to extend extant MDC formulations by relaxing the assumption of 

an additively separable utility function. In doing so, we propose a particular non-additively 

separable (NAS) utility functional form that remains within the class of flexible forms, while 

also retaining global theoretical consistency properties. The form also allows clarity in the 

interpretation of parameters and helps understand identification issues. In addition, we propose 

and discuss three different stochastic formulations to acknowledge two different sources of 

errors. The first source of errors arises when consumers make random “mistakes” in maximizing 

their utility function, and the second source of errors originates from the analyst’s inability to 

observe all factors relevant to the consumer’s utility formation. More specifically, we present the 

following three different non-additive utility formulations based on alternative specifications and 

interpretations of stochasticity: (1) The deterministic utility random maximization (DU-RM) 

formulation, which considers stochasticity due to the random “mistakes” consumers make during 

utility maximization, (2) The random utility deterministic maximization (RU-DM) formulation, 

which considers stochasticity due to the analyst’s errors in characterizing the consumer’s utility 

function, and (3) The random utility random maximization (RU-RM) formulation, which 

considers both analyst’s errors and consumer’s optimization “mistakes” within a unified 

framework. For each of these formulations, we are able to retain a relatively simple form for the 

model, and the structure of the Jacobian in the likelihood function is also relatively simple. 

The rest of this paper is structured as follows. The next section formulates a functional 

form for the non-additive utility specification that enables the isolation of the role of different 

parameters in the specification. This section also identifies empirical identification 

considerations in estimating the parameters in the utility specification. Section 3 discusses 

alternative stochastic forms of the utility specification and the resulting general structures for the 

probability expressions. Section 4 provides an empirical demonstration of the model proposed in 

this paper for analyzing household expenditures in transportation-related categories. The final 

section concludes the paper. 
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2. FUNCTIONAL FORM OF UTILITY SPECIFICATION 

The starting point for our utility functional form is Bhat (2008), who proposes a linear Box-Cox 

version of the constant elasticity of substitution (CES) direct utility function for MDC models: 
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where )(xU  is a strictly quasi-concave, strictly increasing, and continuously differentiable 

function with respect to the consumption quantity (K×1)-vector x  ( 0≥kx  for all k ), and kψ , 

kγ  and kα  are parameters associated with good k. The function in Equation (3) is a valid utility 

function if 0>kψ , 0>kγ , and 1≤kα  for all k. For presentation ease, we assume temporarily 

that there is no essential outside good (that is, the case of “inside goods only”), so that corner 

solutions (i.e., zero consumptions) are allowed for all the goods k (this assumption is being made 

only to streamline the presentation and should not be construed as limiting in any way; in fact, as 

we will show later, the econometrics become much easier when there is an essential outside 

good). We also assume for now that the utility function is deterministic to focus on functional 

form issues (important modeling issues arise when we introduce stochasticity, which we discuss 

in Section 3). The possibility of corner solutions implies that the term kγ  in Equation (3), which 

is a translation parameter, should be greater than zero for all k.3 The reader will note that there is 

an assumption of additive separability of preferences in the utility form of Equation (3). 

Bhat’s utility form clarifies the role of the various parameters kψ , kγ  and kα , and 

explicitly indicates the inter-relationships between these parameters that relate to theoretical and 

empirical identification issues (see Bhat, 2008 for an extensive discussion). In particular, kψ  

represents the baseline marginal utility, or the marginal utility at the point of zero consumption. 

kγ , in addition to allowing corner solutions, controls satiation by translating consumption 

quantity, while kα  controls satiation by exponentiating consumption quantity. Clearly, both 

these effects operate in different ways, and different combinations of their values lead to 

different satiation profiles. However, empirically speaking, it is very difficult to disentangle the 

two effects separately, which leads to serious empirical identification problems and estimation 
                                                 
3 As illustrated in Kim et al. (2002) and Bhat (2005), the presence of the translation parameters makes the 
indifference curves strike the consumption axes at an angle (rather than being asymptotic to the consumption axes), 
thus allowing corner solutions. 
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breakdowns when one attempts to estimate both kγ  and kα  parameters for each good. Thus, for 

identification purposes, earlier studies have either constrained kα  to zero for all goods 

(technically, assumed kk ∀→  0α ) and estimated the kγ  parameters (i.e., the -γ profile utility 

form), or constrained kγ  to 1 for all goods and estimated the kα  parameters (i.e., the -α profile 

utility form). 

Vásquez-Lavín and Hanemann (2008) extended Bhat’s additively separable linear Box-

Cox form and presented a quadratic version of it, as below: 
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where 0>kψ , 0>kγ , and 1≤kα  for all k. The new interaction parameters kmθ  allow quadratic 

effects (when mk = ) as well as allow the marginal utility of good k to be dependent on the level 

of consumption of other goods (note that mkkm θθ =  for all k and m). Positive interaction 

parameters accommodate complementarity effects, while negative interaction parameters 

accommodate substitution effects. Of course, if 0=kmθ  for all k and m, the utility function 

collapses to Bhat’s linear Box-Cox form. If kk ∀→  0α , the function collapses to the well-

known direct basic translog utility function (see Christensen et al., 1975), and if kk ∀=  1α , we 

obtain the quadratic utility function used by Wales and Woodland (1983). The quadratic form of 

Equation (4) is a flexible functional form that has enough parameters to provide a second-order 

approximation to any true unknown direct twice-differentiable utility functional form. It also is a 

non-additive functional form. However, the flexibility is also a limitation, since the function can 

provide nonsensical results and be theoretically inconsistent for some combinations of the 

parameters and consumption bundles, an issue that has not received much attention in the 

literature (but see Sauer et al., 2006). For example, positive value of the kkθ  parameters can lead 

to situations with increasing (as opposed to diminishing) marginal utility with increasing 

consumption. Similarly, negative kkθ  parameters can lead to parabolic utility forms that do not 

comply with theory that utility is strictly increasing with consumption. In fact, due to the 

presence of the kkθ  parameters, it is not possible to achieve global consistency (over all 

consumption bundles) in terms of the strictly increasing and quasi-concave nature of the utility 
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function using the translog form. In the next section, we extend Vásquez-Lavín and Hanemann’s 

discussion to clarify the role of parameters, identify issues of theoretical consistency and 

restrictions that need to be maintained, present identification considerations, and recommend a 

flexible form similar to the translog but that is easier to estimate and reduces global 

inconsistency problems associated with the translog. 

 

2.1. Role of Parameters in Non-Additively Separable Utility Specification 

2.1.1. Role of kψ  

The marginal utility of consumption with respect to good k can be written from Equation (5) as: 
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The difference between the above expression and the corresponding one in Bhat’s (2008) linear 

Box-Cox additively separable case is the presence of the second term in parenthesis, which 

includes the consumptions of other goods. Thus, the formulation is not additively separable, but 

one in which the marginal utility of a good is dependent on the consumption amounts of other 

goods. The marginal utility at zero consumption of good k collapses to: 
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From above, it is clear that kψ  is no more the baseline (marginal) utility of good k at the point of 

zero consumption of good k. Rather, it should be viewed as the baseline (marginal) utility of 

good k at the point at which no good has yet been “consumed”; that is, when mxm ∀=  0  (no 

consumption decision has yet been made). This also indicates that, if prices of all goods are the 

same, then the good with the highest value of kψ  will definitely see some positive consumption.4 

Another important point to note from Equation (5) is that for the utility function to be 

strictly increasing, the following condition should be satisfied for all possible values of the 

consumption vector x: 

                                                 
4 If there is price variation across goods the good with the highest price-normalized marginal utility kk pψ  will 
definitely see some positive consumption (see Pinjari and Bhat, 2011). 
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This is in addition to the condition in the linear case where kk   0∀>ψ . The condition above is 

needed because we are considering the case of economic goods. In addition, a sufficiency 

condition for maintaining the decreasing marginal utility (or strict quasi-concavity) of the utility 

function is that the left side of Equation (7) be a non-increasing function of kx . We return to 

these conditions later in the paper. 

 

2.1.2. Role of kγ  

As in the linear case, the kγ  parameter allows for corner solutions. In particular, the kγ  terms 

shift the position of the point at which the indifference curves are asymptotic to the axes from 

)0 ..., ,0 ,0 ,0(  to ) ..., , , ,( 321 Kγγγγ −−−− , so that the indifference curves strike the positive 

orthant with a finite slope. This, combined with the consumption point corresponding to the 

location where the budget line is tangential to the indifference curve, results in the possibility of 

zero consumption of good k. In addition to allowing corner solutions, the kγ  terms also serve as 

satiation parameters. In general, the higher the value of kγ , the less is the satiation effect in the 

consumption of kx . However, unlike the linear case, kγ  affects satiation for good k in two ways. 

The first effect is through the first linear term on the left side of Equation (4), and the second is 

through the second term on the right side of Equation (4) that generates quadratic effects. The 

overall effect depends on the sign and magnitude of the parameter kkθ  in the second term. If this 

term is negative, and particularly for high values of kγ , we can get an inappropriate parabolic 

shape for the contribution of alternative k to overall utility within the range of kx . In particular, 

beyond a certain point of consumption of alternative k, there is negative marginal utility. This is 

because of the violation of the condition in Equation (7). An illustration is provided in Figure 1, 

which plots the utility contribution of alternative k for 1=kψ , 0→kα , 02.0−=kkθ , 

kmkm ≠∀=  0θ , and different values of kγ  ( 1=kγ , 10, and 30). As can be observed, for the kγ  

value of 30, we get a profile that peaks at about 110 units, and violates the requirement that the 

utility function be strictly increasing. On the other hand, if kkθ  is positive and quite high in 
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magnitude, it is possible that, for high kγ  values, there is in fact an increase in the marginal 

utility effect at low values of kx  (essentially a violation of the strictly quasi-concave assumption 

of the utility function). This is because the left side of Equation (7) becomes an increasing 

function of kx  at low kx  values. Figure 2 illustrates such a case for 1=kψ , 0→kα , 2.0+=kkθ , 

kmkm ≠∀=  0θ , and different values of kγ  ( 1=kγ , 10, and 30). For 10=kγ , one can discern 

the increasing marginal utility until about 6.5 units after which the shape becomes one of 

decreasing marginal utility. The increasing marginal utility at low values is particularly 

pronounced for 30=kγ , which continues until a value of 40 units before starting to decrease in 

marginal utility. We will return to these issues in Section 2.2. 

The translation parameters mγ  of other goods also have an impact on the utility 

contribution of good k, through the influence on the baseline (marginal) utility of good k (see 

Equation (6)). Specifically, for a given value of mx , the baseline (marginal) utility for good k 

increases as mγ  increases for positive kmθ  values and decreases as mγ  increases for negative kmθ  

values. 

 

2.1.3. Role of kα  

The express role of kα  is to reduce the marginal utility with increasing consumption of good k; 

that is, it represents a satiation parameter. However, as in the case of the kγ  effect on 

consumption of good k, there are two effects of the kα  parameter – one through the first linear 

term on the right side of Equation (4) and the second through the quadratic effect caused by the 

combination of the first and second terms on the right side of Equation (4). The overall kα  effect 

depends on the sign and magnitude of the parameter kkθ  in the second term. If this term is 

negative, and particularly for values of kα  close to 1, we can get a “nonsensical” parabolic shape 

for the utility contribution of alternative k within the usual possible range of kx . An illustration 

is provided in Figure 3, which plots the utility contribution of alternative k for ,1=kγ  1=kψ , 

03.0−=kkθ , kmkm ≠∀=  0θ , and different values of kα . As can be observed, at the kα  value 

of 0.6, we get a profile that peaks at about 150 units and decreases thereafter, violating the 
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requirement that the utility function be strictly increasing. On the other hand, if kkθ  is positive 

and quite high in magnitude, it is possible that, for high kα  values, there is in fact an increase in 

the marginal utility effect at some low values of kx . Figure 4 illustrates such a case for ,1=kγ  

1=kψ , 2.0+=kkθ , kmkm ≠∀=  0θ , and different values of kα . The non-conforming utility 

profile is obvious for the kα  value of 0.8. 

The mα  parameters for other goods also impact the baseline (marginal) utility of good k 

(see Equation (6)). For a given value of mx , the baseline (marginal) utility for good k decreases 

as mα  falls down from 1 for positive kmθ  values and increases as mα  falls down from 1 for 

negative kmθ  values. 

 

2.2. Empirical Identification Issues Associated with Utility Form 

The total number of parameters in the flexible utility functional form of Equation (4) rises 

rapidly with the number of alternatives, especially in the kmθ  terms ( ;,2,...,1 Kk =  Km ,2,...,1= ). 

There are also empirical identification issues that arise with the utility form. As in the linear case, 

empirically speaking, it is next to impossible to disentangle the effects of the kγ  and kα  

parameters for each good separately (see Bhat, 2008). Thus one has to impose some constraints 

on these parameters. While many combinations of constraints are possible, the easiest 

approaches are to constrain kα  to zero for all goods (technically, assume kk   0∀→α ) and 

estimate the kγ  parameters (the -γ profile), or constrain kγ  to 1 for all goods and estimate the 

kα  parameters (the -α profile). 

In the case of the non-additively separable utility function, there is an additional 

empirical identification issue in both the -γ profile case and the -α profile case. This is because 

the kkθ  parameters in the quadratic utility functional form essentially also serve as “satiation” 

parameters by providing appropriate curvature to the utility function. However, empirically 

speaking, it is difficult to disentangle the kkθ  effects from the kγ  effects (for the -γ profile) and 

from the kα  effects (for the -α profile) as long as the kkθ  effects do not become that negative as 

to bring on a parabolic shape at even low to moderate consumption levels (this latter case would 

anyway be inappropriate to represent the utility function). In fact, a utility profile based on a 
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combination of kkθ  and kγ  values for the -γ profile case can be closely approximated by a 

utility function based solely on kγ  values with 0=kkθ . Similarly, a utility profile based on a 

combination of kkθ  and kα  values for the -α profile case can be closely approximated by a 

utility function based solely on kα  values with 0=kkθ . This is illustrated in Figures 5 for the 

-γ profile, with 1=kψ , kk ∀→  0α , and kmkm ≠∀=  0θ . The figure shows that alternative k’s 

contribution to utility based on a certain combination of kγ  and kkθ  values can be closely 

replicated by other combination values of kγ  and kkθ . In particular, the utility profiles 

corresponding to combinations of kγ  and kkθ  values can be replicated very closely by a profile 

that corresponds to 1=kγ  and some specific kkθ  value, or by a profile that corresponds to 

0=kkθ  and some specific kγ  value. Thus, in Figure 5, the utility profiles corresponding to 

45.7=kγ  and 0=kkθ , and 1=kγ  and 3.1=kkθ , are able to closely replicate all the other utility 

profiles. A similar situation may be observed from Figure 6 for the -α profile, where the utility 

profiles of different combinations of kkθ  and kα  values can be approximated closely by the 

profile corresponding to 442.0=kα  and 0=kkθ , and 0=kα  and 38.1=kkθ . 

The discussion above suggests that, without loss of empirical generality, one can 

normalize 1=kγ  (and estimate kkθ ) or set 0=kkθ  (and estimate kγ ) for each good k in the 

-γ profile case. In the -α profile case, one can normalize 0=kα  (and estimate kkθ ) or set 

0=kkθ  (and estimate kα ) for each good k in the utility function. We propose to set 0=kkθ  for 

each good, since this immediately removes the possibility of a parabolic shape for the utility 

contribution of good k. At the same time, we immediately ensure that the marginal utility is 

strictly decreasing over the entire range of consumption values of the good k. These are 

important theoretical considerations that we are able to maintain globally without any loss in 

functional form flexibility. In fact, the functional form proposed in this paper remains within the 

class of flexible forms, while also retaining global theoretical consistency properties (unlike the 

translog and related flexible quadratic functional forms). The result is also clarity in the 

interpretation of the kγ  and kα  parameters, which now have the same interpretation as satiation 

parameters corresponding to good k as in the linear utility function case of Bhat (2008). Besides, 
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the baseline marginal utility of good k now remains unchanged with the consumption of good k, 

which is intuitive. 

There is still, however, one remaining issue, which is that the baseline marginal utility of 

all goods should be positive for all consumption bundles ( 0~ >kπ , Kk ,2,...,1= ). The only way 

this condition will hold globally is if 0≥kmθ  for all k and m (see Equation (6)). The condition 

0>kmθ  implies that the goods k and m are complements (since the consumption of good m 

would increase the baseline marginal utility of good k and therefore consumption of good k). 

However, we would also like to allow rich substitution patterns in the utilities of goods by 

allowing 0<kmθ  for some pairs of goods. As we discuss later, our methodology accommodates 

this, while also recognizing the constraint 0~ >kπ  ( Kk ,2,...,1= ) during estimation and ensuring 

that it holds in the range of consumptions observed in the data. 

To summarize, we propose the following general formulation for the non-additively 

separable utility specification: 
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Note that the above function is obtained by simply setting kkθ  parameters to zero in the Vásquez-

Lavín and Hanemann (2008) function in Equation (3). Further, as discussed earlier, the analyst 

will need to estimate the -γ profile or the -α profile. The -γ profile takes the following form: 
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and the -α profile takes the following form: 
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In the case that a -γ profile is estimated, the kγ  values need to be greater than zero, which can 

be maintained by reparameterizing kγ  as )exp( kκ . Additionally, the translation parameters can 

be allowed to vary across individuals by writing kkk wκ~′=κ , where kw  is a vector of individual 

characteristics for the kth alternative, and kκ~′  is a corresponding vector of parameters. In the case 
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when a -α profile is estimated, the kα  values need to be bounded from above at the value of 1. 

To enforce these conditions, kα  can be parameterized as )]exp(1[ kδ−− , with kδ  being the 

parameter that is estimated. Further, to allow the satiation parameters (i.e., the kα  values) to vary 

across individuals, Bhat (2005) writes kkk yδ~′=δ , where ky  is a vector of individual 

characteristics impacting satiation for the kth alternative, and kδ
~  is a corresponding vector of 

parameters. In actual application, it would behoove the analyst to estimate models based on both 

the estimable profiles above, and choose the one that provides a better statistical fit. In the rest of 

this paper, we will use the general form in Equation (8) for the “no-outside good” case for ease 

in presentation. 

Thus far, the discussion has assumed that there is no essential outside good. If an 

essential outside good is present, label the outside good as the first good which now has a unit 

price of one (i.e., )11 =p . This good, being an outside good, has no interaction term effects with 

the inside goods; i.e., )1( 01 ≠∀= mmmθ . The utility functional form of Equation (8) now needs 

to be modified as follows: 
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In the above formula, we need 01 ≤γ , while 0>kγ  for 1>k . Also, we need 011 >+ γx . The 

magnitude of 1γ  may be interpreted as the required lower bound (or a “subsistence value”) for 

consumption of the essential outside good. As in the “inside goods only” case, the analyst will 

generally not be able to estimate both kα  and kγ  for the outside and inside goods. The analyst 

will have to use either an -α profile or a -γ profile, though we will use the general form above 

for ease in presentation. For identification, we impose the condition that 11 =ψ . 

 

3. THE ECONOMETRIC MODEL 

We first consider the “no-outside” good setting, because the econometrics is more involved in 

this case. When an essential outside good is also present, the econometrics simplify considerably, 

as we will show after discussing the more involved case. 
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3.1. Optimal Consumption Allocations 

The consumer maximizes utility )(xU  as provided by Equation (8) subject to the budget 

constraint that ∑
=

=
K

k
kk Exp

1
, where kp  is the unit price of good k and E is total expenditure 

across all goods. The analyst can solve for the optimal consumption allocations by forming the 

Lagrangian and applying the KKT conditions. The Lagrangian function for the problem is: 
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where λ  is the Lagrangian multiplier associated with the budget constraint (that is, it can be 

viewed as the marginal utility of total expenditure or income). The KKT first-order conditions 

for the optimal consumption allocations (the *
kx  values) are given by: 
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U λ*

x  if 0=*
kx , Kk ,2,...,1= . 

The precise form of the KKT conditions depends on how stochasticity is introduced in the 

model, and determines the model structure (note that the discussions in Section 2 were based on 

the assumption of a deterministic utility function). 

 

3.2. Introducing Stochasticity in the Additively Separable (AS) Case 

To complete the econometric model, the analyst needs to introduce stochasticity. This is an 

important component of the model formulation. As in Bhat (2008), we maintain that a stochastic 

component must be included in the context of each alternative k, rather than ignoring the 

stochastic component for one of the alternatives. This is because the probability expressions and 

the probability values of consumption of the different alternatives completely change based on 

which alternative’s stochastic term is suppressed.5 In Bhat’s additively separable (AS) form of 

                                                 
5 Studies that adopt a non-stochastic approach for one of the alternatives do so for an outside good that is always 
consumed. However, there is little reason to expect that the outside good is any different than the inside goods in 
terms of utility perceptions, and so the authors consider it conceptually and structurally inconsistent to consider the 
outside good’s utility to be non-stochastic and the inside good’s utilities to be stochastic. Besides, if an analysis is 
being conducted without an explicit outside good, it is essential to consider stochasticity in each alternative’s utility 
contribution. 
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the utility function in Equation (3) (and in other restricted versions of this formulation), 

stochasticity is introduced using the following random specification: 
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where kz  is a set of attributes characterizing alternative k and the decision maker, and the kε  

terms are independent and identically distributed (IID) across alternatives with an extreme value 

distribution. kε  captures idiosyncratic (unobserved) characteristics that impact the baseline 

utility for good k (the above stochastic utility form is equivalent to assuming a stochastic 

baseline (marginal) utility function given by ))exp(( kk εψ z ). The exponential form for the 

introduction of the random term guarantees the positivity of the baseline marginal utility as long 

as 0)( >kzψ . To ensure this latter condition, )( kzψ  is further parameterized as )exp( kzβ ′ , 

where β  is a vector of parameters. The KKT conditions corresponding to the random utility 

functional form of Equation (14) are thus stochastic and take the following form: 
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According to this approach, any stochasticity in the KKT conditions originates from the analyst’s 

inability to observe all factors relevant to the consumer’s utility formation. Individuals are 

assumed to know all relevant factors impacting choice, and make an error-free maximization of 

overall utility (subject to the budget constraint) to determine their consumption patterns (this is 

the random utility-deterministic maximization or RU-DM decision postulate).  

Note, however, that the stochastic KKT conditions above of the AS model could as well 

have been obtained using a deterministic utility specification (rather than a random utility 

specification) as follows: 
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The KKT conditions corresponding to the above form are also deterministic (the conditions are 

identical to Equation (15), without the presence of the term )exp( kε ). But stochasticity can then 

be introduced explicitly in the KKT conditions in a multiplicative exponential form to once again 

obtain Equation (15). According to this view, not only is the consumer aware of all factors 

relevant to utility formation, but the analyst observes all of these factors too. However, 

consumers are assumed to make random mistakes (“errors”) in maximizing utility (subject to the 

budget constraint), which gets manifested in the form of stochasticity in the KKT conditions (this 

is the deterministic utility-random maximization or DU-RM decision postulate; though they do 

not characterize this perspective as the DU-RM postulate, Wales and Woodland explicitly 

identify this alternative perspective for KKT models – see footnote 5 in their paper, page 268). 

While the DU-RM postulate is seldom used for KKT models in the econometric literature, it 

certainly is a plausible one that should not be summarily dismissed. It also allows the usual 

computations of compensating variation for welfare analysis (a common reason for modeling 

consumer preferences) as does the RU-DM postulate. 

In the AS case, both the DU-RM and RU-DM decision postulates lead to exactly the 

same model (further, when the error terms kε  are assumed to be IID across alternatives, the 

resulting model collapses to the surprisingly simple MDCEV model after using a logarithm 

transformation on the KKT conditions of Equation (15), as illustrated by Bhat, 2008). Since the 

two postulates are empirically indistinguishable, one can use either postulate to motivate the 

model. However, this ceases to be the case when moving from the AS utility form to the non-

additively separable (NAS) utility functional form of Equation (8). In the next two sections, we 

discuss the DU-RM and RU-DM formulations, and show how a formulation that combines these 

two formulations in a random utility-random maximization (RU-RM) decision postulate is 

particularly convenient and general for the NAS case. 

 

3.2.1 The DU-RM non-additively separable (NAS) utility formulation and model 

Consider the utility form of Equation (8). For this deterministic NAS utility form, the 

corresponding deterministic KKT conditions are: 
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where kπ~  is the baseline marginal utility as provided in Equation (6). Stochasticity may be 

introduced explicitly in the KKT conditions in the usual multiplicative exponential form as 

follows: 
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Note that, unlike in the AS case, one cannot develop a random utility specification that 

corresponds to the KKT stochastic conditions in the equation above.6 

The optimal demand satisfies the conditions in Equation (18) plus the budget constraint. 

The structure is now exactly the same as the MDCEV model of Bhat (2005, 2008). Specifically, 

consider an extreme value distribution for kε  and assume that kε  is independent of kψ , kγ , and 

kα  ( Kk ,2,...,1= ). The kε  terms are also assumed to be independently distributed across 

alternatives with a scale parameter of σ  (σ  can be normalized to one if there is no variation in 

unit prices across goods; see Bhat, 2008 for a detailed discussion of identification issues). In this 

case, the probability expression collapses to the following MDCEV closed-form: 

                                                 
6 A random utility function of the form:  
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The expression above, which is effectively the baseline (marginal) utility of good k, is a function of all the error 
terms, and does not collapse to )exp( kk επ~ as in the DU-RM NAS model. In any case, the random utility function 
form above is also not theoretically and conceptually intuitive, as we discuss later (see footnote 8). 
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where the first alternative is an alternative to which the consumer allocates some non-zero 

budget amount (note that the consumer should allocate budget to at least one alternative, given 

that the total expenditure across all alternatives is a positive quantity). To write these Jacobian 

elements, define hizih ==   if  1 , and .  if  0 hizih ≠=  Also, define the following: 
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Then, the elements of the Jacobian can be derived to be:7 
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where 
)(

1

kkk

k
k xp
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α
+

−
= * . Unfortunately, there is no concise form for the determinant of the 

Jacobian for 1>M  (unlike the case of the additively separable case, where Bhat derived a 

simple form for any value of M). When 1=M  (i.e., only one alternative is chosen) for all 

individuals, there are no satiation effects ( 1=kα  for all k), )(  , 0 mkmkkm ≠∀=θ  and the 

Jacobian term drops out (that is, the continuous component drops out, because all expenditure is 

allocated to good 1). Then, the model in Equation (19) collapses to the standard MNL model. 

In estimating the DU-RM model, as discussed in Section 2.1.1, we should ensure 0~ >kπ  

for each good k. This is recognized in the logarithmic transformation of kπ~  appearing in kV . At 

                                                 
7 The derivation is rather straightforward, but requires some cumbersome differentiation. Interested readers may 
obtain the derivation from the authors. 
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the same time, we also require that 0>kψ , which is ensured (as in the AS case) by writing 

)exp( kk zβ ′=ψ . Also, since only differences in the kV  from 1V  matters in the KKT conditions, a 

constant cannot be identified in the term for one of the K alternatives. Similarly, individual-

specific variables are introduced in the kV ’s for (K-1) alternatives, with the remaining alternative 

serving as the base. The parameters in the DU-RM NAS-based model may be estimated in a 

straightforward way using the maximum likelihood inference approach. However, it is difficult 

to motivate generalized extreme value error structures and variable-specific random coefficients 

in the context of the DU-RM formulation. These extensions, however, are quite natural in the 

context of the RU-DM decision postulate, which we discuss in the next section. 

For the DU-RM formulation with an essential outside good, the econometrics simplify 

considerably. One can go through the same procedure as earlier by writing the KKT conditions 

and introducing stochasticity corresponding to the deterministic utility expression in Equation 

(11) instead of Equation (8). For the outside good (say, the first alternative), we have the 

following: .1 and  ,1 ,0 111 ===′ pψxβ  The final expression for probability in this outside good 

case is the same as in Equation (19) with the following modifications to the kV  terms: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+−= 1)ln1(ln)ln(

k

k
kkkk

x
pV

γ
απ

*
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The Jacobian elements in this case simplify relative to Equation (22), with )1( 01 ≠∀= kmmθ . 

The elements now are given as follows: 
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3.2.2. The RU-DM non-additively separable (NAS) utility formulation and model 

Consider the following random utility form originating from the NAS utility function form of 

Equation (8) for the no-outside good case: 
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where kξ  is an IID (across alternatives) random error term with a scale parameter of σ  (σ  can 

be normalized to one if there is no variation in the unit prices across alternatives). kξ  captures 
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idiosyncratic (unobserved) characteristics that impact the baseline (marginal) utility of good k at 

the point at which no expenditure outlays have yet been made on any alternative.8,9 The KKT 

conditions then are: 
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Define kω  as in Equation (21). Let k
k

k WR −⋅=
ω
ωη 1

1  and )exp( kk zβ ′=ψ , and let the first 

alternative be the one to which the consumer allocates some non-zero budget amount. Then, the 

KKT conditions may be simplified as follows: 
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8 Vásquez-Lavín and Hanemann indicate that introducing stochasticity in the multiplicative exponential form as in 
Equation (25) does not help in any way simplify the KKT first-order conditions. They proceed by writing the utility 
function as: 
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zβx . The problem with this, however, is that 

it allows negative values for kk ε+′zβ , which is theoretically inappropriate since this term has to be positive for 
)(xU  to be a valid utility function. Besides, as we will show below, there is really no computational advantage 

whatsoever in assuming a linear form relative to a multiplicative exponential form. 
9 Stochasticity in utility is assumed in a specific form in Equation (25), where the supposition is that the analyst does 
not observe all factors that influence the baseline (marginal) utility for each alternative at the point when no 
consumption decisions have yet been made (we will refer to this baseline utility as the “no-consumption” baseline 
(marginal) utility). This stochastic specification is quite intuitive, since it indicates an intrinsic (unobserved) 
individual preference for each alternative whose magnitude remains stable as the consumer navigates to reach 
her/his optimal expenditure point. The alternative way of including utility stochasticity as in the equation in footnote 
5 is very difficult to justify and interpret, since it postulates that the magnitude of unobserved individual factors 
influencing the baseline (marginal) utility for any specific alternative varies continuously during the navigation 
process and is a complex parametric function of the extents of the “no-consumption” unobserved individual 
preferences of all alternatives. Besides, the econometrics involved with such a utility specification is extremely 
difficult. Thus, from both an intuitive and econometric perspective, we suggest that Equation (25) is the appropriate 
one to use in the context of a random utility specification for the NAS case.  
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Next, let )exp( kkζ ξ= , and assume that (.)g  and (.)G  are the standardized versions of the 

probability density function and standard cumulative distribution function characterizing kζ . 

Then, the probability that the individual allocates expenditure to the first M of the K goods may 

be derived to be: 
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where (.)f  refers to the density function characterizing 1ζ , and 1ξ|MJ  is the Jacobian whose 

elements are given by ( 1,2,...,1, −= Mhi ): 
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The probability expression in Equation (28) is a simple one-dimensional integral, which 

can be computed using quadrature techniques. Note that the distribution for kξ  can be any 

univariate distribution, though the normal distribution may be convenient if there are also 

random normal coefficients in the β  vector to capture unobserved individual heterogeneity (then 

the one-dimensional normal integral becomes simply a part of a multi-dimensional normal 

integration that can be evaluated using familiar simulation techniques). Such a random-

coefficients specification allows a flexible covariance structure between the elements of the β  

vector, and can also include covariances among the baseline utilities of alternatives (as in a 

mixed multinomial logit structure). The model may be estimated using traditional maximum 

likelihood techniques, as for the DU-RM formulation. Note, however, that the marginal utility of 

any good at any point of consumption should be positive (for strictly increasing utility 

functions). This condition is met by setting 0kη >  (see Equation (26)) for each good k. 
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When an essential outside good is present, the econometrics again simplify considerably. 

For the outside good (say, the first alternative), we have the following: 01 =W , 01 =′zβ , 11 =ψ , 

11 =p , and 11 ζ=η . The random utility function originates from Equation (11) and takes the 

following form: 
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The probability expression takes the same form as in Equation (28) with the following 

modifications to the kω  terms: 
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The Jacobian elements are as follows ( 1,...,2,1, −= Mhi ): 

[ ] .)1())((
)exp(

1
111111111

1

1

1 ⎭
⎬
⎫

⎩
⎨
⎧

−−+
′

= ++++++
++

ihhhihihih
ii

ih zpzLpLζJ ωθη
ω
ω

,|
zβ

                         (32) 

 

3.2.3. The RU-RM non-additively separable (NAS) utility formulation and model 

Consider the random utility function of Equation (25) for the case with no essential outside good. 

The KKT conditions are given by Equation (26), but we now add stochasticity originating from 

consumer mistakes in the optimizing process.10 The KKT conditions take the form shown below: 
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10 Intuitively, we are able to distinguish between random preferences and random maximization errors in the NAS 
case because the former is associated with the “no-consumption” baseline (marginal) utilities that then remains fixed 
during the consumer’s navigation through the optimization process, while the latter is essentially associated with 
overall mistakes represented by random errors in the baseline (marginal) utilities after including 
substitution/complementarity effects. In the AS case, both these sources of stochasticity become one and the same 
because there are no substitution/complementarity effects, leading to an identification problem.  



24 

where kη  is as defined earlier in Equation (26) (and has the error term kξ  embedded within), and 

the kε  terms are independent and identically (across alternatives) extreme value distributed. 

Recall that the kξ  terms represent stochasticity due to the analyst’s inability to capture consumer 

preferences, while the kε  terms represent stochasticity due to consumer errors in utility 

maximization. Let ).,...2,1(  )/6()()( 22 KkVarVar kk ==+ σπξε 11 In the RU-RM formulation, we 

assume that the kξ  terms are normally distributed. This is particularly convenient when one 

wants to accommodate a flexible error covariance structure through a multivariate normal-

distributed coefficient vector β  and/or account for covariance in utilities across alternatives 

through the appropriate random multivariate specification for the kξ  terms. To develop the 

probability function for consumptions, let  )/6()( 222 σπμε =kVar and 

)/6)(1()( 222 σπμξ −=kVar  ),...,2,1( Kk = , where μ  is a parameter to be estimated ).10( ≤≤ μ  

Then, if ,0→μ  and when there is no covariance among the kξ  terms across alternatives, the 

RU-RM formulation approaches the RU-DM formulation of Section 3.2.2 in which the scale 

parameter σ  is innocuously rescaled to σπ  )6/( , so that the variance of the error terms kξ  in 

the RU-DM formulation is comparable to the variance of the corresponding terms in the RU-RM 

formulation. However, as ,1→μ  the RU-RM formulation approaches the DU-RM formulation. 

Thus, the parameter μ  determines the extent of the mix of the RU-DM and DU-RM decision 

postulates leading up to the observed behavior of consumers. One can impose the constraint that 

10 ≤≤ μ  through the use of a logistic transform ))exp(1/(1 *μμ −+=  and estimate the 

parameter .*μ  

The probability expression for consumptions in the RU-RM model formulation takes the 

following mixed MDCEV form: 
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11 As earlier, we will impose the normalization that 12 =σ  if there is no price variation across the alternatives.  
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and F  is the multivariate normal distribution of the random element vector ),...,,( 21 Kξξξ=ξ  

(each of whose elements has a variance of .) )/6)(1( 222 σπμ−  The elements of the Jacobian are 
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When there is an essential outside good, the probability expression remains the same as 

in Equation (34), but with ⎟⎟
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))ln(1( 1111 γα +−= *xV , )1( 01 ≠∀= mmmθ , 01 =W , 01 =′zβ , 11 =ψ , 11 =p , and 

)exp( 11 ξη = . The Jacobian elements in this case are given as follows: 
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Similar to the earlier two formulations, the theoretical condition that the marginal utility 

of consumption for any alternative should always be positive must be ensured during model 

estimation. Thus, we should ensure 0kη >  for each good k. 

 

4. EMPIRICAL DEMONSTRATION 

4.1. The Context  

In 2010, transportation expenses accounted for nearly 20% of total household expenses and 12-

15% of total household income (U.S. Bureau of Labor Statistics, 2012). In fact, this is the second 

largest family expense category after housing, with an average expenditure of $7,677 per year 

(or, equivalently, about $650 per month). It is little surprise, therefore, that the study of 

transportation expenditures has been of much interest in recent years (Gicheva et al., 2007, 

Cooper, 2005, Hughes et al., 2006, Thakuriah and Liao, 2006, Choo et al., 2007a,b, Sanchez et 

al., 2006). Several of these studies examine the factors that influence total household 

transportation expenditures and/or examine transportation expenditures in relation to 

expenditures on other commodities and services (such as in relation to housing, 
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telecommunications, groceries, and eating out). But there has been relatively little research on 

identifying the many disaggregate-level components of transportation expenditures, with all 

transportation expenditures usually lumped into a single category. Besides, many of these earlier 

efforts use the almost ideal demand system (AIDS) proposed by Deaton and Muelbauer (1980), 

which assumes that all families expend their budgets in all possible expenditure categories (that 

is, the AIDS model does not allow corner solutions, as does our proposed model).  

In the current paper, we demonstrate the use of the proposed model for an empirical case 

of household transportation expenditures in six disaggregate categories: (1) Vehicle purchase, (2) 

Gasoline and motor oil (termed as gasoline in the rest of the document), (3) Vehicle insurance, 

(4) Vehicle operation and maintenance (labeled as vehicle maintenance from hereon), (5) Air 

travel, and (6) Public transportation. In addition, we consider all other household expenditures in 

a single “outside good” category that lumps all non-transportation expenditures, so that total 

transportation expenditure is endogenously determined. Households expend some positive 

amount on the “outside good” category, while expenditures can be zero for one or more 

transportation categories for some households. A non-additively separable utility form is adopted 

to accommodate rich substitution patterns as well as to allow complementarity among the 

transportation expenditure categories.  

Data for the analysis is drawn from the 2002 Consumer Expenditure (CEX) Survey, 

which is a national level survey conducted by the U.S. Census Bureau for the Bureau of Labor 

Statistics (U.S. Bureau of Labor Statistics, 2003). This survey has been administered regularly 

since 1980 and is designed to collect information on incomes and expenditures/buying habits of 

households in the United States. In addition, information on individual and household socio-

economic, demographic, employment and vehicle characteristics is also collected. Details of the 

data and sample extraction process for the current analysis are available in Ferdous et al. (2010). 

Essentially, the 109 categories of expenditure and income defined by the CEX were 

consolidated, defining 17 broad categories of annual expenditures (including the six categories of 

transportation expenditures identified in the previous paragraph). Next, the 11 non-transportation 

categories were all grouped into a single “outside good” category, and the proportion of total 

expenditures (across the six transportation categories and the “outside good” category) spent in 

each of the six transportation categories and the “outside” non-transportation category were 

constructed as the dependent variables in the analysis. 
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The final sample for analysis includes 4100 households. About one-quarter of the sample 

reports expenditures on vehicle purchase. 94% of the sample incurs expenditures on gasoline, 

and 90% of the sample indicates vehicle maintenance expenses. About 80% of the sample has 

vehicle-insurance related expenses, suggesting that a sizeable number of households operate 

motor vehicles with no insurance or have insurance costs paid for them (possibly by an employer 

or self-employed business). About one-third of the sample reports spending money on public 

transportation and air travel. Only 2.6% of the households expend no money in transportation-

related expenses. These households may undertake trips using non-motorized modes, or rely on 

someone else to travel. Altogether, expenditures on transportation-related items account for 

about 15% of household income, a figure that is quite consistent with reported national figures. 

Of the 4100 households, a random sample of 3600 households was used for model estimation 

and the remaining sample of 500 households was held for out-of-sample validation. 

 

4.2 Model Specification and Estimation  

The additively separable (AS) and non-additively separable (NAS) models were estimated using 

the GAUSS matrix programming language.12 We first estimated the best empirical specification 

for the MDCEV model (assuming additive separability) based on intuitive and statistical 

significance considerations, and then explored alternative specifications for the interaction 

parameters in the NAS model for the three model formulations proposed. The -γ profile of 

Equation (9) was used in all specifications, since it consistently provided a better model fit than 

the -α profile. Also, the 1γ  value for the outside good was set to zero for estimation stability. 

Recall that the DU-RM formulation assumes extreme value random error terms for the 

random mistakes made by the consumer during his/her optimization process, while the RU-DM 

specification assumes normally distributed random terms for the analyst’s errors in 

characterizing the consumer’s utility functions. In the absence of interactions between the sub-

utility functions of different alternatives, the DU-RM formulation collapses to the AS MDCEV 

model, while the RU-DM formulation collapses to an AS MDC model with IID normal (or 

probit) error terms (label this as the MDCP for MDC probit model). Thus, for model evaluation 

purposes, the analyst can compare the performance of the DU-RM model to its special case 

                                                 
12 GaussTM, Aptech Systems Inc., Maple Valley, WA, USA, http://www.aptech.com. 
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MDCEV and that of the RU-DM model to its special case MDCP. The RU-RM formulation 

utilizes a combination of extreme value error terms and normally distributed error terms for the 

consumer’s mistakes and the analyst’s errors, respectively. Thus, for this last formulation there is 

no direct AS model to be compared with. However, as discussed in Section 3.2.3, the RU-DM 

and DU-RM formulations are limiting case of the RU-RM formulation.  

The estimation of the three model formulations was undertaken to explicitly consider the 

constraint that the marginal utility of any good at any consumption point for each good k should 

always be positive. In the current empirical application, our attempts to use the constrained 

maximum likelihood module of GAUSS to estimate the models encountered estimation 

instability and convergence problems. Therefore, the models were estimated using the traditional 

maximum likelihood module of GAUSS, while checking for the positivity of the marginal utility 

at each iteration and heuristically updating parameters to cause the least departure from the 

iteration-search parameters and still ensuring positivity if positivity was not maintained (in most 

iterations, positivity was maintained automatically). The DU-RM NAS model was estimated 

imposing 0~ >kπ  for each good k (see Equation (6)), since the term kπ  is inside a logarithmic 

function. For the RU-DM and RU-RM NAS models, the baseline marginal utility is given by 
1
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is always positive, we have to constrain 0>kη . In 

the estimation of the RU-DM and RU-RM NAS models formulations, we imposed the more 

restrictive condition 0>kW  to ensure that the condition is fulfilled for all values of kξ  ( kξ  is 

embedded in kη ; see Equation (26)). Quadrature techniques for log-normally distributed 

variables were used to evaluate the integral in Equation (28) for the RU-DM NAS model 

formulation (details are available from the authors). To evaluate the multivariate integral of 

Equation (34) for the RU-RM NAS model, we used the Halton sequence to draw realizations for 

),...,,( 21 Kξξξ=ξ  from a normal distribution, assuming in the empirical analysis that these error 

terms are independent and identically distributed across alternatives. Details of the Halton 

sequence and the procedure to generate this sequence are available in Bhat (2003). We tested the 

sensitivity of parameter estimates with different numbers of Halton draws per observation, and 

found the results to be very stable with as few as 75 draws. In this analysis we used 100 draws 

per household in the estimation. 
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4.3 Model Results  

The estimation results are provided in Table 1. At the outset, we should note that the intent of 

this empirical analysis is not to contribute in a substantive way to an analysis of household 

expenditures. Rather, the emphasis is on demonstrating the applicability of the three different 

NAS formulations proposed in this paper, and showing the advantage of the NAS formulations 

relative to the traditional AS formulations. To that extent, the focus is on in-sample and out-of-

sample data fits of the NAS and AS formulations, as well as on demonstrating the significant 

presence of NAS interaction parameters in our NAS utility formulations.  

Table 1 is organized in three main columns. The first main column provides the 

parameters estimates of the DU-RM NAS model and its restrictive MDCEV formulation, while 

the second main column presents the results of the RU-DM NAS model and its restrictive MDCP 

formulation. The third column provides the parameters estimates of the RU-RM non-AS model. 

As discussed in Section 3, one of the alternatives forms the base category for the introduction of 

the family-specific variables in the baseline utility in Table 1. This base alternative is the 

essential outside good, which is the non-transportation good category in the current analysis. If, 

in addition, some transportation categories do not appear for a variable in Table 1, it implies that 

these transportation categories also constitute the base expenditure category along with the non-

transportation category. For example, for the effect of “Number of workers in the household”, 

the base categories include the non-transportation category as well as the air travel and public 

transportation categories. A positive (negative) coefficient for a certain variable-category 

combination implies that an increase in the explanatory variable increases (decreases) the 

likelihood of budget being allocated to that expenditure category relative to the base expenditure 

categories.  

Overall, the empirical results are intuitive. Also, while there are differences in the 

estimated coefficients between the AS and NAS models, the general pattern and direction of 

variable effects are similar. Regarding the baseline parameters ( β ), the alternative specific 

constants in the baseline utility for all the transportation categories are negative, indicating the 

generally higher baseline utility of the “outside” non-transportation good category relative to 

each transportation category (this is a reflection of the higher expenditure on the outside good 

than on the transportation categories). Similar to the results found by Thakuriah and Liao (2005), 

as the number of workers in the household increases, so does the proportion of income allocated 
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to all vehicle-related transportation expenses, presumably to support the transportation needs of 

multi-worker households (an exception is in the RU-DM model, in which the coefficient 

associated with vehicle insurance is negative but statistically insignificant). The effect of income 

was considered in a continuous linear form, in a piecewise linear form to introduce non-

linearities, as well as in the form of dummy variables for specific income categories. At the end, 

a dummy variable specification with low income (less than 30K), mid-range income (30-70K), 

and high income (>70K) provided the best results. The effect of this discrete representation of 

income is incorporated with the low income category constituting the base category (and so the 

low income category does not appear in Table 1). The results indicate that, relative to families in 

the low income group, families in the middle and high income groups expend a higher proportion 

of their income on vehicle purchases and air travel. These families also spend a lower proportion 

of their income on gasoline relative to the low income group, suggesting that gasoline 

expenditures constitute a particularly high proportion of the income budgets of low income 

families. A detailed discussion of this result from a social and environmental justice perspective 

can be found in Deka (2004). Households with more vehicles tend to allocate a larger proportion 

of their income to all the transportation categories, except on public transportation. Finally, non-

Caucasians, those residing in urban areas, and those living in the Northeast and West regions of 

the U.S. spend a higher proportion on public transportation than Caucasians, those residing in 

non-urban areas, and those living in the South and Midwest regions of the U.S, respectively. 

The satiation parameters ( kγ ) in Table 1 capture the variation in the extent of non-

linearity across different expenditure categories. The satiation parameter is highest for the 

vehicle purchase category, indicating that households are likely to allocate a large proportion of 

their budget to acquiring a vehicle, if they expend any money in this category. The satiation 

parameter is lowest for gasoline, indicating that households allocate a relatively small proportion 

of their overall budget in gasoline consumption.  

Several interaction parameters ( kmθ ) are statistically significant in the final model 

specification presented in Table 1. The interaction parameters of the DU-RM NAS model 

indicate a significant complementary effect in vehicle purchase and gasoline expenditures, and in 

vehicle purchase and vehicle maintenance expenditures. Also, as expected, there are 

complementary effects in the expenditures on gasoline, vehicle insurance, and vehicle 

maintenance, as well as between air travel and public transportation expenditures. This last 
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complementary effect perhaps reflects the use of public transportation to get to/from the airport 

and the use of public transportation at the non-home end. On the other hand, there are 

particularly sensitive substitution effects in gasoline and air transportation expenditures, 

presumably a reflection of the choice between auto travel and air transportation mode travel for 

long-distance trips. For the RU-DM NAS model formulation, only complementarity effects were 

statistically significant, which align with the results of the DU-RM NAS model. The RU-RM 

model interaction parameters show significant complementarity effects similar to those from the 

DU-RM and RU-DM models, along with a strong substitution effect between vehicle purchase 

and public transportation expenditures. This latter substitution effect is more intuitive than the 

complementary effect between vehicle purchase and public transportation expenditures, as 

implied by the RU-DM model.  

As mentioned in Section 3.2.3, the RU-RM NAS formulation combines the RU-DM and 

DU-RM postulates of consumer behavior via the parameter μ . In the current empirical analysis, 

we obtained 379.0=μ . The parameter is statistically different from zero (with a t-stat of 58.51 

as shown in Table 1) and statistically different from one (with a t-stat of 95.60). The μ  

parameter is closer to zero than it is to one, indicating that the predominant source of 

stochasticity (62%) is due to the analyst’s errors in characterizing the consumer’s utility function. 

To a lesser extent (38%), stochasticity arises also from the random “mistakes” consumers make 

during utility maximization.  

  

4.4. Model Evaluation 

In this section, we compare the model performance of the AS and NAS models, both in the 

estimation sample of 3600 households as well as a validation sample of 500 households.  

In terms of model fit in the estimation data, the log-likelihood value at convergence of the 

DU-RM NAS model is -36,645, while that of the MDCEV model is -37,045. A likelihood ratio 

test between these two models returns a value of 799, which is larger than the chi-squared 

statistic value with 7 degrees of freedom at any reasonable level of significance, indicating the 

substantially superior fit of the DU-RM NAS model compared to the MDCEV model. Similarly, 

the log-likelihood value at convergence of the RU-DM NAS model is -35,086, while the same 

figure for the MDCP model is -35,269. The likelihood ratio test between the RU-DM and MCDP 

models is 366, which again indicates a statistically significant difference in data fit between the 
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models. The log-likelihood value at convergence of the RU-RM NAS model is -34,168, which is 

considerably higher than the corresponding value for the MDCEV and MDCP models. The RU-

RM NAS model log-likelihood is also far superior to the log-likelihood values of the DU-RM 

amd RU-DM models, underscoring the presence of stochasticity on the part of both the analyst 

and the consumer.13  

To further compare the performance of the MDCEV and NAS models, we computed an 

out-of-sample log-likelihood function (OSLLF) using the validation sample of 500 observations. 

The OSLLF is computed by plugging in the out-of-sample (i.e., validation) observations into the 

log-likelihood function, while retaining the estimated parameters from the estimation sample. As 

indicated by Norwood et al. (2001), the model with the highest value of OSLLF is the preferred 

one, since it is most likely to generate the set of out-of-sample observations. Table 2 reports the 

OSLLF values for the entire validation sample (of 500 households) as well as for different socio-

demographic segments within the sample. As can be observed from the first row, the OSLLF 

value for the DU-RM model is better than for the MDCEV model, and the OSLLF value for the 

RU-DM model is better than for the MDCP model. This result is also maintained, in general, for 

all socio-demographic segments.  Also, in general, the RU-RM formulation outperforms all other 

formulations, except in a few isolated segments with few observations.  

In summary, the data fits of the NAS models are superior to that of the AS models in both 

the estimation and validation samples. 

 

5. CONCLUSIONS 

Classical discrete and discrete-continuous models deal with situations where only one alternative 

is chosen from a set of mutually exclusive alternatives.  Such models assume that the alternatives 

are perfectly substitutable for each other. On the other hand, many consumer choice situations 

                                                 
13 An interesting result from Table 1 that is not directly relevant to the current paper, but of general interest, is that 
the MDCP model provides a much better data fit relative to the MDCEV model. Note that these differences are 
simply an artifact of using an IID extreme value distribution for the errors in the MDCEV as opposed to an IID 
normal distribution for the errors in the MDCP (since, in the AS case, the DU-RM and RU-DM formulations 
become identical up to the distribution chosen for the error terms). Thus, the choice of the error term distribution in 
MDC models does not seem as innocuous as that in traditional discrete choice models (where, for example, the 
results from a binary probit model and a binary logit model tend to be almost identical after parameter scaling). This 
result is not entirely surprising, since the MDC model uses both the probability density function as well as the 
cumulative distribution function of the error terms (or, more precisely, of the error term differences) to 
accommodate the combined discrete-continuous nature of the formulation, while traditional discrete choice models 
use only the cumulative distribution function of error differences (and cumulative distribution functions can be 
relatively similar even for random distributions with quite different continuous probability density functions).  
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are characterized by the simultaneous demand for multiple alternatives that are imperfect 

substitutes or even complements for one another. Traditional MDC models developed in the 

literature adopt an additively-separable utility form that assumes that the marginal utility of a 

good is independent of the consumption amounts of other goods. It also is not able to allow 

complementarity among goods. This paper develops model formulations that allow a non-

additive utility structure and complementarity effects. As importantly, the utility functional form 

proposed here remains within the class of flexible forms, while also retaining global theoretical 

consistency properties (unlike the Translog and related flexible quadratic functional forms). The 

result is also clarity in the interpretation of the model parameters. Stochasticity is introduced in 

the formulation in three different ways to develop three possible models for non-additive utility 

structures. In the first stochastic formulation, labeled as the deterministic utility–random 

maximization or DU-RM decision postulate, consumers are assumed to make random mistakes 

in maximizing utility. In the second stochastic formulation, labeled as the random utility-

deterministic maximization or RU-DM decision postulate, consumers are assumed to know all 

relevant factors impacting their choices and make an error-free maximization of overall utility, 

but the analyst is not aware of all the factors influencing consumer’s choice. The third stochastic 

formulation combines the two previous postulates into a random utility-random maximization 

(RU-RM) decision postulate.  

 The proposed non-additively separable model formulations should have several 

applications. In the current paper, we demonstrate the application of the formulations to the 

empirical case of household transportation expenditures in six disaggregate categories: (1) 

Vehicle purchase, (2) Gasoline and motor oil, (3) Vehicle insurance, (4) Vehicle operation and 

maintenance, (5) Air travel, and (6) Public transportation. In addition, we consider other 

household expenditures in a single “outside good” category that lumps all non-transportation 

expenditures, so that total transportation expenditure is endogenously determined. Households 

expend some positive amount on the “outside good” category, while expenditures can be zero for 

one or more transportation categories for some households. Data for the analysis is drawn from 

the 2002 Consumer Expenditure (CEX) Survey, which is a national level survey conducted by 

the US Census Bureau for the Bureau of Labor Statistics. The results of the DU-RM, RU-DM 

and RU-RM non-additively separable formulations suggest statistically significant 

complementary and substitution effects in the utilities of selected pairs of transportation 
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categories, and show the substantially superior data fit of the proposed formulations relative to 

ones that assume an additively separable utility structure. The proposed non-additive separable 

models performed better in a validation sample as well.  

In summary, the paper has successfully formulated and applied different forms of MDC 

models with non-additively separable utility functional forms. One area for further research is to 

develop more formal and rigorous methods to ensure the positivity of the marginal utility for 

each observation at each estimation iteration.  Currently, we aided the estimation procedure by 

heuristically (and somewhat in an ad hoc manner) updating parameters to cause the least 

departure from the iteration-search parameters and still ensuring positivity (if positivity was not 

maintained automatically). 
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Table 1. Model Estimation Results 

Variables 
MDCEV and DU-RM Models MDCP and RU-DM Models 

RU-RM NAS 
MDCEV DU-RM NAS MDCP RU-DM NAS 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 
Baseline Utility Parameters ( β )                     
Baseline Constants                     
  Veh. purchase  -7.126 -70.59  -8.059 -19.59  -5.865 -117.32  -5.279   -88.92  -5.926 -106.70 
  Gasoline/oil  -2.523 -37.62  -2.955 -38.11  -3.280   -79.61  -2.366   -56.75  -3.453 -100.43 
  Veh. insurance  -3.975 -72.08  -4.565 -28.01  -4.116 -106.60  -3.829   -84.00  -4.329 -120.54 
  Veh. maintenance  -3.446 -60.82  -4.247 -30.02  -3.893   -90.77  -3.486   -78.87  -4.169 -135.08 
  Air travel  -6.144 -72.87  -5.487 -50.12  -5.334 -125.56  -4.646 -101.04  -5.931   -76.82 
  Public transp.  -5.819 -42.16  -5.596 -52.95  -5.171   -78.27  -4.489   -52.26  -5.893   -38.35 
Number of workers in household                     
  Veh. purchase   0.182    4.41   0.194    3.59   0.085      3.70   0.060      1.94   0.079      3.62 
  Gasoline   0.209    7.74   0.264    5.78   0.175      8.40   0.184      6.64   0.165    10.64 
  Veh. Insurance   0.081    2.89   0.111    2.52   0.058      3.40  -0.003     -0.14   0.039      2.30 
  Veh. Maintenance   0.192    7.36   0.288    6.02   0.139      8.74   0.116      5.32   0.098      7.71 
Annual HH income 30-70K                      
  Veh. purchase   0.808    7.97   1.368    4.24   0.446       9.69   0.580      9.57   0.513    10.37 
  Gasoline  -0.284   -5.60  -0.337   -3.32  -0.198      -4.27  -0.346     -6.23  -0.219     -7.51 
  Air travel   0.756    8.80   0.414    7.26   0.400      9.10   0.511      9.97   0.330      4.43 
Annual HH income >70K                     
  Veh. purchase   0.805    6.34   1.395    4.07   0.430      6.28   0.525      6.10   0.509      7.88 
  Gasoline  -0.793 -10.89  -0.964   -5.51  -0.656     -8.26  -1.006   -11.18  -0.636   -13.91 
  Veh. insurance  -0.337   -5.26  -0.379   -2.94  -0.308     -5.18  -0.356     -4.66  -0.251     -5.34 
  Air travel   1.189  11.31   0.695    7.16   0.587      8.13   0.670      8.70   0.290      2.80 
Number of vehicles in household                     
  Veh. purchase   0.304  11.75   0.340  10.59   0.171    10.77   0.126      6.82   0.149    11.68 
  Gasoline   0.305  15.70   0.350  12.65   0.263    15.83   0.247    14.26   0.177    20.44 
  Veh. insurance   0.275  14.04   0.317  10.50   0.220    15.14   0.166      9.46   0.151    12.76 
  Veh. maintenance   0.269  13.62   0.326  11.86   0.198    14.87   0.141      9.25   0.105    11.96 
  Air travel   0.073    2.56   0.100    7.30   0.056      3.29   0.007      0.38  -0.030     -1.20 
  Public transp.  -0.122   -3.82  -0.555 -15.84  -0.051     -3.71  -0.131     -8.74  -0.698   -25.25 
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Table 1. Model Estimation Results (cont.)  

Variables 
MDCEV and DU-RM Models MDCP and RU-DM Models 

RU-RM NAS 
MDCEV DU-RM NAS MDCP RU-DM NAS 

Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat Parameter t-stat 
Baseline Utility Parameters ( β )                     
Non-Caucasian HH – Public transp.   0.417    5.29   0.559    7.28   0.340    10.22   0.347      6.67   0.712      9.75 
Urban location – Public transp.   0.490    3.96   0.580    6.09   0.261      4.88   0.287      3.78   0.487      3.36 
North East Region – Public transp.   0.722    9.04   0.944  11.10   0.510    14.73   0.585    10.79   0.873    11.32 
Western Region – Public transp.   0.590    8.28   0.709    8.73   0.292      8.60   0.370      7.49   0.398      5.59 
Translation Parameters ( γk )                     
  Veh. purchase 20.888  15.31 21.429  10.95 70.739    12.20 66.645    10.86 80.185      9.82 
  Gasoline   0.196  17.49   0.179    9.57   0.510    17.73   0.348    33.50   0.744    18.24 
  Veh. insurance   0.613  27.13   0.607  17.58   1.176    26.99   1.791    29.67   1.568    26.30 
  Veh. maintenance   0.284  21.08   0.270   17.55   0.879    23.94   1.153    28.82   1.809    23.95 
  Air travel   0.677  19.58   0.500  14.43   1.879    22.90   1.280    20.05   8.314    16.48 
  Public transp.   0.237  19.64   0.160  17.47   0.918    30.57   0.577    26.02   1.330    18.33 
Interaction Parameters ( θkm )                              
   Veh. purchase and gasoline  ‐  ‐   1.278×10-3    3.23 ‐  ‐  1.126×10-3    37.29 -   - 
   Veh. purchase and veh. insurance ‐  ‐  - - ‐  ‐  0.406×10-3    22.78  0.300×10-4      4.36 
   Veh. purchase and veh. maintenance ‐  ‐   0.338×10-3    2.26 ‐  ‐  0.467×10-3    19.41  0.131×10-3      9.98 
  Veh. purchase and air travel ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. purchase and public transp. ‐  ‐  - - ‐  ‐  0.212×10-3      5.70 -0.890×10-4     -4.85 
   Gasoline and veh. insurance ‐  ‐   2.023×10-2    4.53 ‐  ‐  1.954×10-2    32.58  2.436×10-3    10.17 
   Gasoline and veh. maintenance ‐  ‐   5.095×10-2    7.00 ‐  ‐  2.151×10-2    37.93  0.909×10-3      4.95 
   Gasoline and air travel ‐  ‐  -5.023×10-3   -5.81 ‐  ‐  - - -   - 
   Gasoline and public transp. ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. insurance and veh. maintenance ‐  ‐   4.103×10-3    2.90 ‐  ‐  8.879×10-3    25.34  0.366×10-3      4.19 
   Veh. insurance and air travel ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. insurance and public transp. ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. maintenance and air travel ‐  ‐  - - ‐  ‐  - - -   - 
   Veh. maintenance and public transp. ‐  ‐  - - ‐  ‐  - - -   - 
   Air travel and public transp. ‐  ‐   8.623×10-3  14.45 ‐  ‐  1.199×10-3      7.48  9.204×10-3    35.87 
μ parameter ‐ ‐ ‐  ‐   0.379    58.51 
Number of parameters 33 40 33 41 40 
Log-likelihood at convergence -37,045 -36,645 -35,269 -35,086 -34,168 
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Table 2. Out-of-sample log-likelihood function (OSLLF) in the Validation Sample 

Sample details Number of 
observations 

MDCEV and DU-RM 
Models 

MDCP and RU-DM 
Models RU-RM 

NAS 
MDCEV DU-RM NAS MDCP RU-DM NAS 

Full validation sample 500 -5575.23 -5518.59 -5271.59 -5263.30 -5179.57 
Number of workers in HH             
  0   14   -147.99   -148.82   -139.89   -142.17   -136.35 
  1 109 -1139.69 -1126.78 -1075.22 -1149.70 -1059.11 
  2 240 -2667.62 -2623.82 -2527.78 -2521.63 -2433.19 
  >2  137 -1619.94 -1619.16 -1528.63 -1520.63 -1515.07 
Household income 
($/year)             
  < 30K   10   -100.62   -101.93     -95.85     -95.28   -100.27 
  30K-70K 168 -1862.08 -1845.04 -1742.09 -1743.00 -1702.33 
  >70K 322 -3612.53 -3571.61 -3433.48 -3425.01 -3362.76 
Number of vehicles             
  0     9     -98.68     -98.00     -95.69     -96.03   -100.06 
  1   81   -854.90   -846.73   -805.70   -808.38   -783.27 
  2 173 -1763.61 -1746.95 -1671.01 -1689.54 -1690.87 
  More than 2 237 -2858.05 -2826.90 -2698.78 -2666.61 -2571.36 
Race             
  Non-Caucasian   47   -527.42   -520.27   -491.55   -483.70   -494.47 
  Caucasian 453 -5047.80 -4998.31 -4779.76 -4779.63 -4630.92 
Residential location             
  Urban 469 -5217.53 -5167.21 -4933.27 -4929.99 -4855.93 
  Rural   31   -357.72   -351.37   -337.88   -333.33   -321.51 

 

 

 
  

 


