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Abstract Daily exposures to ambient oxides of nitrogen were
estimated here for residents of Hillsborough County, FL. The
2009 National Household Travel Survey provided geocoded
data on fixed activity locations during each person-day sam-
pled. Routes between activity locations were calculated from
transportation network data, assuming the quickest travel
path. To estimate daily exposure concentrations for each
person-day, the exposure locations were matched with diur-
nally and spatially varying ambient pollutant concentrations
derived from CALPUFF dispersion model results. The social
distribution of exposures was analyzed by comparing frequen-
cy distributions of grouped daily exposure concentrations and
by regression modeling. To investigate exposure error, the
activity-based exposure estimates were also compared with
estimates derived using residence location alone. The mean
daily activity-based exposure concentration for the study sam-
ple was 17 μg/m3, with values for individual person-day
records ranging from 7.0 to 43 μg/m3. The highest mean
exposure concentrations were found for the following groups:
black (20 μg/m3), below poverty (18 μg/m3), and urban

residence location (22 μg/m3). Urban versus rural residence
was associated with the largest increase in exposure concen-
tration in the regression (8.3 μg/m3). Time in nonresidential
activities, including travel, was associated with an increase of
0.2 μg/m3 per hour. Time spent travelling and at nonresiden-
tial locations contributed an average of 6 and 24 %, respec-
tively, to the daily estimate. A mean error of 3.6 %, with range
from −64 to 58 %, was found to result from using residence
location alone. Exposure error was highest for those who
travel most, but lowest for the sociodemographic subgroups
with higher mean exposure concentrations (including blacks
and those from below poverty households). This work indi-
cates the importance of urbanicity to social disparities in
activity-based air pollution exposures. It also suggests that
exposure error due to using residence location may be smaller
for more exposed groups.
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Introduction

Estimation of human exposures to air pollution is important to
researchers and practitioners in the fields of air quality man-
agement, environmental epidemiology, and urban design.
Exposure estimation requires characterization of pollutant
concentrations when and where a person or group spends time
(Ott 1982). Although personal monitoring has long been used
to determine exposures in the field of air pollution epidemi-
ology (Dockery and Spengler 1981), it is time and cost inten-
sive, resulting in small sample sizes that may be limited for
representing a general population (Jerrett et al. 2005;
Pekkanen and Pearce 2001). Hence, methods of estimating
exposures for a large group of people are needed for
population-level risk assessment and policy decisions.
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For large-sample studies, exposures to air pollutants have
often been estimated using residence address to represent the
location of exposure. Concentrations measured at fixed mon-
itoring sites or concentration surrogates (such as nearby traffic
counts) are used to derive exposures at the residence locations
(Huang and Batterman 2000; Meng et al. 2007; von Klot et al.
2009). Although this is a relatively simple and generalizable
approach that can be applied in the context of available data, it
is recognized that human activity patterns may be particularly
important for explaining exposure variation (Klepeis et al.
2001; National Center for Environmental Assessment et al.
2011; Ott et al. 1986). Hence, exposure error and misclassifi-
cation are concerns, with potential outcomes of inaccurate
health and environmental impact assessments and policy in-
terventions (Huang and Batterman 2000; Krzyzanowski 1997;
Özkaynak et al. 1986; Sheppard et al. 2012; Thomas et al.
1993; Zeger et al. 2000).

As a result, studies have investigated the use of more
refined estimates of population location and concentration to
represent personal exposures, through methods that character-
ize or apply patterns of human activity (e.g., from time activity
dairies) and microenvironment concentrations (Dons et al.
2011; Kornartit et al. 2010; Lai et al. 2004). These methods
often improve the estimate of group-level and personal expo-
sures but remain substantially limited in the characterization
of spatiotemporal variations in concentrations and activities.
A few recent case studies have begun using detailed activity-
travel patterns derived from travel surveys or activity-based
models, coupled with air pollution modeling, to estimate air
quality exposures or health impacts (Dons et al. 2014;
Gariazzo et al. 2011; Hankey et al. 2012; Hatzopoulou and
Miller 2010), including analysis of exposure error (Dhondt
et al. 2012; Setton et al. 2011), exposure inequality (Marshall
et al. 2006; Marshall 2008), impacts of travel (Beckx et al.
2009; de Nazelle et al. 2013; Zhang and Batterman 2013),
urban form (Stone et al. 2007), and transportation policies
(Dhondt et al. 2013). Nonetheless, the literature remains
sparse, and additional case studies applying and improving
these methods are needed. Additionally, limited literature
exists on the social distribution of exposure error.

This study is part of an ongoing project that aims to
enhance the current understanding on exposures to traffic-
related air pollution, specifically on the social distribution of
exposure and impacts of urban design (Evans and Stuart 2011;
Fridh and Stuart 2014; Stuart et al. 2009; Stuart and Zeager
2011; Yu and Stuart 2013). Here, we investigate impacts of
activities and urban design factors on exposures and exposure
disparities. We also estimate the error introduced by use of
residence location only versus detailed spatiotemporal activity
on exposure estimates. Our methods combine information
from an available travel survey, estimated travel routes, and
concentration data from air pollution modeling results. We
address the following questions through this work: How are

population activities distributed spatiotemporally in the study
domain? How are exposures distributed among population
groups in the study domain?What is the strength and direction
of disparities between groups? Does urban form influence the
strength of exposures and their social distribution? Which
factors are most influential? Are findings robust to uncer-
tainties in exposure estimation associated with the representa-
tion of exposure location? How much does the representation
of spatiotemporal activity location impact exposure estimates?
Are the errors associated with exposure estimation different
for different population subgroups? Methods and findings on
these questions are detailed below.

Methods

Study area and pollutant focus

Hillsborough County, FL, shown in Fig. 1, is the area of study.
The area contains a diverse mix of air pollutant emission
sources, including an extensive highway network. Further, it
has undergone considerable urban sprawl during the past few
decades; in 2000, Smart Growth America ranked it as the
22nd most sprawled metropolitan area (out of 83 with popu-
lations over a half million) (Ewing et al. 2002). In 2012, the
Texas Transportation Institute ranked Tampa-St. Petersburg as
30th for congestion (yearly delay per commuter) (Schrank
et al. 2012), with automobiles as the primary mode of personal
transportation. Regarding measured air quality, ozone levels
exceed the National Ambient Air Quality Standard a few
times most years, while particle levels are close to the 24-h
standard. The American Lung Association grades the county’s
air quality as F for ozone and C for particulate matter
(American Lung Association 2011). Further, the county is
interesting for social equality reasons, as its population is
relatively diverse and somewhat residentially segregated
(Stuart et al. 2009).

The pollutant focus of this paper is oxides of nitrogen
(NOx), which is the sum of nitrogen monoxide (NO) and
nitrogen dioxide (NO2, a US criteria air pollutant with an
established standard level). Although, levels of NO2 measured
by regulatory networks rarely exceed the national standard,
NOx is a precursor to both ozone and fine particles. Further, it
is a common urban pollutant that has been associated with
respiratory responses for susceptible individuals, particularly
children, even at levels below the National Ambient Air
Quality Standard (US Environmental Protection Agency
2008). Studies have linked exposure to oxides of nitrogen
with cardiovascular and respiratory mortality (Faustini et al.
2014), gestational diabetes and preeclampsia (Malmqvist et al.
2013), diabetes mellitus and hypertension (Coogan et al.
2012), and incidence of asthma (Anderson et al. 2013). NOx

is also a recognized surrogate in health outcomes analyses for
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the complex mix of traffic pollution (HEI Panel on the Health
Effects of Traffic-Related Air Pollution 2010).

Estimation of spatiotemporal human activity-travel patterns

Human activity-travel patterns representing the study area
were estimated using data from the National Household
Travel Survey (NHTS). The periodic survey characterizes
the daily travel behavior of Americans (Federal Highway
Administration 2009). Data are collected on all out-of-home
trips taken over approximately a 24-h period for individuals
sampled by the survey. The data collected include the purpose
of each trip (work, shopping, recreation, etc.), trip start and
end times, travel times, travel distances for each trip, and the
geocoded locations of activities. Sociodemographic character-
istics (including age, race/ethnicity, household income, house-
hold size, and neighborhood urbanicity) of those surveyed are
also collected. Here, we used the data from the 2009 survey to
characterize spatiotemporal locations of daily activity and
travel in Hillsborough County, FL.

The National Household Travel Survey sample for
Hillsborough County includes daily activity records for
1,582 persons from 804 households. Prior to use, we filtered
the sample to exclude daily activity records that were incon-
sistent or had missing information. We also excluded records
that contained travel outside of the county boundaries (beyond
which detailed NOx concentrations were not available). For a
few records, it was necessary to pare the data to exactly 24 h
(beginning at 12:00 a.m.). The resulting sample consisted of
1,224 daily activity records, including 239 with no travel
away from the residence location on the survey day.

To estimate the locations of daily activities in time and
space for the county sample, we first extracted data from each
individual 24-h activity record (a person-day). Specifically,
we extracted the geocoded residence location (latitude, longi-
tude), origin and destination locations for each trip, trip start
times, and dwell times (time spent at the activity location)
using SPSS (version 20.0, IBM Corp. Armonk, NY). Since
the National Household Travel Survey does not record infor-
mation on travel path, we estimated the route of travel for each
trip. Specifically, we used the Network Analyst tool in ArcGIS

Fig. 1 The study area of Hillsborough County, FL. The inset provides the location of the study area within the state of Florida
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(version 10.0, ESRI, Redlands, CA) to select the shortest time
path between each trip’s origin and destination, based on
roadway link times and a network shape file (NAVTEQ
2010). Travel times for each link were calculated using link
lengths and link free-flow speeds provided with the network
data. Spatial location coordinates (latitude, longitude) along
each trip path were extracted at a discrete interval of 100 m of
path length using the ET GeoWizards tool (version 10.2, ET
Spatial Techniques, Faerie Glen, South Africa). The temporal
location coordinate (time of day) for each discrete spatial
location was estimated by adjusting the time on each link by
the ratio of the total trip time from the survey data to that from
the link time estimate.We then combined the trip path location
data to create a highly resolved sequential spatiotemporal
record of estimated activity location for each person-day in
the filtered county sample.

Estimation of diurnal pollutant concentrations at activity
locations

To estimate pollutant exposures for the study sample, we used
ambient NOx results from our previous dynamic CALPUFF
air pollution dispersion modeling for the study area. Details of
the modeling methods, results, and evaluation are provided in
Yu and Stuart (2013). In essence, concentrations were esti-
mated using detailed emissions, including link-level roadway
emissions, and meteorological data for 8,760 h (all hours of
2002) for the study area. The results provide estimated con-
centrations on a receptor grid with 1-km spatial resolution for
Hillsborough County. For matching with the daily activity-
travel records here, we estimated the diurnal cycle of the
spatial distribution of NOx concentration from the model
results by averaging the hourly modeled concentration results
at each receptor over each hour of the day.

Estimation of daily exposure concentration and exposure
error

One goal of this work was to investigate the impact of activity-
travel patterns on exposure estimates. To do this, we calculat-
ed and compared daily exposure concentrations for each
person-day using two methods. Both methods estimate the
time-weighted exposure concentration, C=(1 / T) ∫cdt, where
c is the instantaneous pollutant concentration at an exposure
location, dt is the instantaneous time interval of exposure, and
T is the total exposure averaging period, which equals ∫dt (24 h
for the person-day records here).

The first method uses only the residence location to estimate
daily exposure concentration for each person-day. We call this
the residence-based exposure concentration (CR); it represents
conventional exposure concentration estimation using only
residence address information. Since the spatial location of
exposure does not change with this approach, the discretized

exposure concentration during each person-day varies in time
only, not in space. Using the ArcGIS intersect tool, we extract-
ed concentrations from the 24 dispersion modeling concentra-
tion maps (each representing 1 h of the day with 1-km spatial
resolution), resulting in ambient concentrations (cτ) for each
hour of the day (Δtτ, equal to 1 h) at each residence location.
We then numerically integrated these data using time
weighting in SPSS to estimate the daily residence-based expo-
sureCR=(∑cτΔtτ) / T for each person-day in the study sample.

Second, we estimated daily exposure concentrations by
matching the spatiotemporal locations in each person-day
activity-travel record with modeled concentration at those
locations; we call this the activity-based exposure concentra-
tion estimate (CA). Specifically, we extracted concentrations
from the modeled data for each discrete location along each
person-day activity-travel path. This results in ambient pollut-
ant concentration (cσ) and time spent (Δtσ) for each
discretized spatiotemporal activity-travel path location,
σ=(latitude, longitude, time). Note that concentration for the
same hour of day changes due to movement in space. The
daily activity-based exposure concentration was then numer-
ically estimated as CA=(∑cσΔtσ) / T for each person-day in
the study sample. For explanatory analyses, we also estimated
exposures, EA=∑cσΔtσ, for subdaily periods.

To compare the twomeasures of exposure concentration, we
calculated the percent difference between the activity-based and
residence-based exposure concentration as (CA−CR) / CA for
each person-day in the sample. We call this the exposure error,
as it estimates the error associated with using residence location
only to calculate exposure. Frequency distributions for the
study sample of daily exposure concentration (estimated using
bothmethods) and of exposure error were compared to describe
differences. A paired sample t test was used to quantify the
significance of differences in the means for each sample distri-
bution. Finally, we calculated bias factors to quantify the po-
tential bias in relative risk estimates (based on simple linear
models) due to use of the residence-based exposure estimate,
following the method outlined by Setton et al. (2011).

Analysis of exposure distributions and inequality

A second goal was to characterize disparities between groups
in their activity-based exposure concentration and in potential
exposure error, including identification of factors impacting
both. To do this, we first categorized daily exposure concen-
trations and exposure errors by population subgroup. We
focused on subgroup types representing characteristics that
have previously been found to experience exposure disparities
or air pollution susceptibility. Specifically, the person-day
exposure concentration estimates were categorized by age
(5–18, 19–45, 46–65, and greater than 65 years),
race/ethnicity (Asian, white, Hispanic, and black), and house-
hold income/poverty (below poverty, above poverty to below
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$75,000, and above $75,000). Age less than 5 could not be
considered, as no survey data are available for this category.
To define the poverty threshold, we use the 2009 federal
poverty guidelines that are based on household size
(Department of Health and Human Services 2009). The above
$75,000 threshold was chosen to capture approximately the
highest third of the income distribution in the study area. After
categorization, group frequency distribution summary statis-
tics (e.g., mean, percentiles) were calculated and compared.
To measure the significance of differences between groups of
the same type, we used 95% confidence intervals around each
mean and performed one-way ANOVA, followed by post hoc
Games-Howell testing (Hayes 2005). A similar analysis was
performed for differences in exposure errors between groups.

To investigate impacts of urban design and activity factors
on exposure and exposure disparities, we performed a few
additional analyses. As a proxy for urban design, we first
categorized exposure concentrations by the urbanicity of the
residence location (urban, suburban, second city, rural), as
provided with the survey data. (Claritas Inc. 2004 provides
urbanicity category definitions; we use the term rural for the
town and country category, to avoid confusion with the proper
name—Town “N”Country—of a region in the study area. See
Fig. 1.) Distributions of activity-based exposure (concentra-
tion × time) were also compared between different activity
location types to explore the contribution of activity-location
type to exposures. Specifically, activity location types were
divided into three categories—at-residence, nonresidential,
and in-travel. Exposures were also compared against daily
travel time. Similar analyses were performed for exposure
error. Finally, we performed a multivariate linear regression
analysis to assess the impact of urban design and activity
factors on exposure concentration. Specifically, we used a
h i e r a r ch i c a l s t epwi s e app roach , i n wh i ch the
sociodemographic predictors (gender, age, racioethnicity),
followed by the income categories, were introduced first, to
control for their impacts on exposure concentration. The
urbanicity categories, followed by the activity time variable,
were entered subsequently. All predictor variables were intro-
duced into the model as categorical binary variables (e.g.,
male/female, black/nonblack), except the time variable, which
was introduced as a continuous variable. A 95 % confidence
(p<0.05) statistical significance criteria for each predictor
variable was used to discard or retain variables at each model-
ing step. All statistical analyses were performed in SPSS.

Results and discussion

Distributions of human activity in the Tampa area

Table 1 provides a summary of the average temporal distribu-
tions of activity types observed by the 2009 National

Household Travel Survey for the filtered study sample in
Hillsborough County. Time activity data are also provided
from two well-known historical human activity surveys used
for exposure analysis, the National Human Activity Pattern
Survey (NHAPS) (Klepeis et al. 2001) and the Canadian
Human Activity Pattern Survey (CHAPS) (Leech et al.
1996). As in the historical surveys, residents in the study
sample spent the majority of their time at home (about
80 %), although the percentage of time spent at home is about
13 % higher here. The order (from highest to lowest percent-
age of time spent) of activity location types is also the same
here as in the NHAPS and CHAPS. However, the quantitative
distribution of time is somewhat different; the population
sampled here spent more time on average at work and less
time travelling, at meals, and at other activities. Some of these
differences may be due to differences in spatial scale, geogra-
phy, and demographics. Specifically, the NHTS results are for
Hillsborough County, FL, while the NHAPS and CHAPS
results are for the entire USA and Canada, respectively.
Further, Florida is a state with large elderly population, which
may contribute to more time spent at home. Finally, different
definitions of the activity-type categories between the surveys
could also have led to some differences.

Figure 2 provides the spatial distribution of activity time
from the study sample (the percentage of total time spent in
each block group area (subplots a–c), along with urbanicity
(subplot d) of each block group). To our knowledge, this

Table 1 Average time spent per day by activity location type

This worka NHAPSb CHAPSc

Activity typed Minutes Percentage Percentage Percentage

Home 1,151 80 67 67

Other 116 8.0 19 20

Work 98 6.8 5.9 6.0

Travel 62 4.3 5.7 5.3

Meals 13 0.9 1.9 1.8

a The filtered sample from the 2009 National Household Travel Survey
(NHTS) for Hillsborough County
bNational Human Activity Pattern Survey (Klepeis et al. 2001)
c Canadian Human Activity Pattern Survey (Leech et al. 2002)
d The following specific categories from each study were included under
each label. Home refers to the NHTS home category and the NHAPS and
CHAPS categories of indoor at home and outdoor at home.Work refers to
the NHTS work category and the NHAPS and CHAPS office/factory
category. Travel refers to the NHTS categories of travel and transport
someone and the NHAPS and CHAPS categories of in vehicles and near
vehicles-outside. Meals refers to the NHTS meals category and the
NHAPS and CHAPS bar/restaurant category. Other refers to the NHTS
categories of school/daycare/religious activity and medical/dental ser-
vices, shopping/errands, family personal/business obligations, social/rec-
reational activities, and other categories and the NHAPS and CHAPS
categories of school/public building, indoors-other, outdoors-other, and
mall/store
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presentation of a spatially distributed activity time density
map applied to exposure analysis is novel. Subplot d indicates
that urbanicity generally decreases from central Tampa,
surrounded by suburbs (including Citrus Park and Temple
Terrace). A few pockets classified as second city areas (Sun
City Center, Brandon, Plant City, New Tampa, and Town “N”
Country) are farther from central Tampa and are surrounded
by areas classified as the rural urbanicity category. The block
group areas in the largest time density category (with at least
0.4 % of the total time in the sample) are located in areas that
are categorized as rural (e.g., Fish Hawk), suburban, and some
second city locations (e.g., in Brandon and Sun City Center)
and largely correspond to the areas with the highest percent-
age of residential activity time (not shown). The block groups
with the highest densities of nonresidential time are largely
special locations (Tampa International Airport, the University
of South Florida) or, for the second highest category (contain-
ing from 0.1 to 0.4 % of total time in the sample), in rural,
second city, or suburban locations. As a whole, the population
of the Hillsborough County sample spent little time in urban
block groups, though the time densities are larger for nonres-
idential activities.

Diurnally varying spatial distributions of NOx concentration

The average diurnal cycle of modeled NOx concentration for
the study area is shown in Fig. 3. See Yu and Stuart (2013) for

a detailed discussion of the spatial distribution of concentra-
tions in the study area and results from evaluation of model
performance. For our purposes here, note that for many hours
of the day, the concentrations are highest along the major
roadways in the area with a broad peak apparent over central
Tampa and near the Tampa International Airport. A high
concentration area is also often visible near a major port
facility (Port Sutton) to the south of downtown. Diurnally,
concentrations exhibit morning (6:00 a.m. to 8:00 a.m.) and
evening (5:00 p.m. to 9:00 p.m.) peaks, consistent with in-
creased NOx emissions from traffic during commute hours.
The evening peak is more spread out in time than the morning
peak, consistent with both a larger meteorological mixing
height in the evening and typical commute behaviors; specif-
ically, the morning commute is known to be largely driven by
work-related activities, while the evening commute may in-
clude maintenance, social, recreational, and other activities
(Jou and Mahmassani 1997; Kim et al. 2008). A detailed
evaluation of modeled estimates against measured data is
provided in Yu and Stuart (2013).

Daily time-weighted activity-based exposure concentrations
and their social distribution

The cumulative distribution of estimated daily (24 h) activity-
based NOx exposure concentration is shown in Fig. 4 (left
side). The mean exposure concentration for the study sample

Fig. 2 The spatial distribution of
sample population activity time
(% of time spent) and urbanicity
in the study area. a% of total time
spent in all activity types within
the block group, b% of total time
spent in nonresidential activities
within the block group, c
difference (%) between
residential and nonresidential
activity times spent in each block
group, and d urbanicity category
of the block group
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is 17 μg/m3, with values for individual person-day records
ranging from 7.0 to 43 μg/m3. Using a typical fraction of NO2

in NOx estimated for the Tampa area of 0.8 (Poor 2008), the
values found here roughly correspond to daily NO2 exposure
concentrations of 7.4 and 18 ppbv for the sample mean and
maximum, respectively. Although these values are on the low
end of 24-h NO2 exposure concentrations measured elsewhere

(e.g., Delfino et al. 2008; Kim et al. 2006), they are in the
range of 24-h average NO2 exposure concentrations that have
been found to be associated with a variety of respiratory-
related health outcomes (US Environmental Protection
Agency 2008).

The cumulative distributions of the activity-based daily
NOx exposure concentrations for a few subgroups are

Fig. 3 The estimated diurnal cycle of hourly average ambient NOX concentrations (μg/m3) in the study area, from dispersion modeling results

Fig. 4 Cumulative distributions
for the activity-based daily
exposure concentration (left side),
residence-based daily exposure
concentration (middle), and daily
exposure error between the two as
a percent difference, (CA−CR) /
CA (right side). The box plot
whiskers indicate the 5th and 95th
percentile values, while cross
indicates the mean value.
Summary statistics are provided
below each box plot; 95 %
confidence intervals around each
mean are in parentheses
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Fig. 5 Cumulative distributions of daily activity-based exposure concen-
tration for population subgroups related to a personal attributes and b
urban characteristics. Category definitions are provided in the text. Note

that the racioethnic subgroup populations are not exclusive, populations
have overlapping individuals

Table 2 Group distribution statistics for daily activity-based exposure concentration and exposure error

Exposure concentration (μg/m3) Exposure error (%)

Group Values of n Mean Confidence interval Min Max Mean Confidence interval Min Max

Race/ethnicitya 1,173

Black 115 20 (19.0–21.5) 8.5 43 1 (−1.1–3.3) −64 34

Hispanic 29 18 (15.9–19.2) 11 28 5 (1.3–9.6) −8.9 45

White 1,029 16 (16.0–16.6) 7.0 41 4 (3.3–4.4) −32 58

Incomeb 1,131

Below poverty 137 18 (17.1–19.2) 7.4 43 1 (−0.6–2.6) −64 45

Middle income 577 17 (16.8–17.6) 7.0 41 3 (1.9–3.5) −52 53

Higher income 417 16 (15.6–16.5) 7.4 32 6 (4.6–6.5) −31 58

Age 1,224

5–18 years 148 17 (16.1–17.9) 8.5 29 3 (0.6–4.6) −64 53

19–65 years 665 17 (16.6–17.4) 7.0 41 5 (4.2–6.0) −48 58

Over 65 years 411 16 (15.9–16.9) 7.4 43 1 (1.0–1.8) −17 23

Urbanicity 1,224

Urban 267 22 (21.2–22.4) 12 43 0 (−1.3–0.9) −64 25

Suburban 387 17 (16.3–17.2) 10 35 4 (3.3–5.2) −31 42

Second city 287 16 (15.5–16.2) 8.8 25 4 (3.1–4.9) −31 38

Rural 283 13 (12.6–13.6) 7.0 27 6 (4.3–7.1) −17 58

Daily travel time 1,224

More than 60 min 452 17 (17.0–17.8) 8.5 41 8 (6.5–8.8) −32 58

Up to 60 min 533 17 (16.2–17.1) 7.6 43 2 (1.0–2.4) −64 42

No travel 239 16 (15.3–16.7) 7.0 35 0 (0–0) 0 0

a Racioethnic labels used here are shortened forms of the race and origin category labels used by the US Census. Category descriptions are available at
www.census.gov. Note that placement in a category is by self-selection, and individuals may be categorized in multiple or no categories
b The below poverty, middle-income, and higher-income labels refer to households with income below the poverty threshold, above the poverty
threshold but less than $75,000 and $75,000 or above
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provided in Fig. 5. Distribution statistics are provided in
Table 2. Apparent differences in exposure concentrations
among subgroups in the racioethnic and income categories
are seen. Among the racioethnic groups, estimated mean daily
exposure concentration is highest for the black group (20 μg/
m3), followed by the Hispanic group; mean exposures were
lowest for whites (16 μg/m3). Results for the Asian subgroup
are not shown due to the small sample size (14 person-days).
Although within-group variations increase with increasing
group mean concentrations, the 95 % confidence intervals
around the means for the black and white categories are far
apart, and one-way ANOVA with post hoc Games-Howell
testing also indicated high significance for the difference
(p=6×10−8). Differences between the other categories were
not significant, as the confidence intervals overlap. Among the
income categories, the mean daily exposure concentration was
highest for the group characterized by household income
below the poverty level (18 μg/m3). This value is slightly
lower than that estimated for the black group. Mean exposure
concentration decreases with the income category, to 16 μg/
m3 for the group characterized by higher incomes (household
annual incomes above $75,000). The confidence intervals and
post hoc testing indicate statistically significant differences
between means for the below poverty versus highest-income
group, and between the two above poverty groups, but not
between the below poverty versus middle-income group.
Differences in mean exposure among the age-based groups
are not apparent.

Differences in daily activity-based exposure concentrations
observed here between the racioethnic groups are consistent
with our previous studies that have estimated exposures in the
Tampa area using only residence location (Stuart et al. 2009;
Yu and Stuart 2013) or school location (Stuart and Zeager
2011). Specifically, we found greater exposures for the black,
Hispanic, and low-income (below poverty) groups than the
white and higher-income groups, respectively. Hence, regard-
less of the use of individual-level activity information in the
exposure estimation, the qualitative direction of the disparities
found for the Tampa area appears to be robust.

Furthermore, results are consistent with other findings from
the study area and elsewhere. Specifically, in a study of the
Tampa area using 1999 National-scale Air Toxics Assessment
concentration data and the population distributions from the 2000
US census, Chakraborty (2009) found that the black, Hispanic,
and below poverty groups are subject to disproportionate cancer
risks and respiratory hazards, while no conclusive inequitieswere
found for individuals above 65 years (Chakraborty 2009).
Overall, results here contribute to the body of literature across
localities in the USA and elsewhere (Green et al. 2004; Houston
et al. 2004; Linder et al. 2008; Marshall et al. 2006; Marshall
2008; Mitchell and Dorling 2003; O’Neill et al. 2003; Pearce
et al. 2006), largely finding typically higher exposures to primary
pollutants for socially and economically disadvantaged groups,

with some exceptions (Buzzelli and Jerrett 2007) and reverse
finding for secondary pollutants (Marshall 2008).

It is worthy of mention that the use of spatiotemporal
activity information in this study did not change the relative
ranking of mean disparities between racioethnic versus in-
come groups. The mean difference between the black and
white category was larger than the difference between the
below poverty and highest-income group; blacks had the
highest estimated average exposure of all racioethnic or in-
come groups. However, this result is complicated by the
results of regression analysis (discussed below), for which
income below poverty was associated with a larger indepen-
dent increase in exposure concentration (1.7 μg/m3), than
being black (versus nonblack, 1.2 μg/m3). However, the com-
parative difference in group mean disparities found here is
consistent with results from other study areas. Specifically, in
a study in southern California, Marshall et al. (2006) found
that exposure levels differed more among ethnic groups than
between high- and low-income households, while Clark et al.
(2014) found a similar result through a national-level analysis.
We note that there are many aspects of social disadvantage
that are not captured by race, ethnicity, or income alone.
Further, it is well established that there are interactions be-
tween factors that affect exposure disparities (e.g., Apelberg
et al. 2005; Perlin et al. 2001), with many studies in the air
pollution field now using multifactor indices that can also
include education, occupation, employment status, family
size, and home ownership (e.g., Forastiere et al. 2007).

Although differences in daily exposure concentrations are
evident in our results, their importance to health outcomes is
not necessarily clear. To explore the potential importance, we
applied literature estimates of increased risk (primarily as
reported by the US Environmental Protection Agency 2008)
to estimate possible health impacts. Neuberger et al. (2007)
found a 2.9 % increase in risk of total mortality associated
with a 10 μg/m3 increase in 24-h mean NO2 concentrations.
Applying this to the differences in group means found here
would suggest an increased risk of 1 % for blacks versus
whites (on average) and an increased risk of 0.5 % for those
living in poverty versus in households with annual incomes
over $75,000 (on average). Even higher differences in health
risks may be present between groups, when considering sus-
ceptible people, such as children and the elderly. Application
of the 61.3 % increased risk for cough incidence per 20 ppbv
increase in 24-h NO2 concentration found by Schwartz et al.
(1994) in a study of children would result in an approximately
5 % excess risk for black compared to white children here, on
average. Similarly, applying the ratio of 6.8 % increased risk
of all respiratory hospitalizations per 20 ppbv increase in daily
NO2 concentrations found in a study by Fung et al. (2006) of
adults aged 65 and older suggests a 0.6 % higher risk for
elderly blacks compared to elderly whites here, on average.
Note that for any individual, the comparative risks may be
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higher or lower due to individual risk factors (smoking, diet,
exercise, occupation, access to health care, etc.) (Dockery
et al. 1993; Pope et al. 2002). Additionally, since differences
in harmful health effects have been found even when differ-
ences in exposures are not clear (Deguen and Zmirou-Navier
2010), small differences in exposures between groups may be
important.

Overall, our results suggest that to attain the policy goal of
reducing disparities in health outcomes (Healthy People 2020
and US Department of Health and Human Services 2010),
interventions that reduce existent disparities in exposure be-
tween socioeconomic groups may be helpful. Further, the
methods used here provide an approach for estimating
activity-based exposures specific to individual person-days,
but for a large sample. This could be helpful for the study of
factors affecting population health outcomes and for estima-
tion of expected risks, without the intractably large costs of
personal exposure concentration sampling for a large
population.

Urban form, activity, and exposure relationships

We are interested in understanding how factors related to
urban form may impact the magnitude of exposures and their
social distribution in the Tampa area. Figure 5b provides the
distributions of estimated daily activity-based exposure con-
centrations categorized by the urbanicity of residence location,
with statistics provided in Table 2. Substantial differences in
NOx exposure concentrations are seen between residence
urbanicity types. The highest mean daily exposure concentra-
tion (22 μg/m3) was found for records with urban residence
location, while that for records with rural residence location
was 40 % lower (13 μg/m3). Mean exposures were interme-
diate for the suburban and second city categories. The confi-
dence intervals and post hoc testing indicate that all differ-
ences between the category means are significant. The largest
difference in means between urban versus rural residence
urbanicity categories (9 μg/m3) is also more than twice as
large as the largest difference among the social categories
discussed above (4 μg/m3 for the black versus white subgroup
mean difference). Hence, residence urbanicity likely influ-
ences exposure and its social distribution among groups.
This is broadly consistent with results of previous studies
comparing exposures for populations in urban versus rural
areas. For example, in the EXPOLIS-Helsinki study, individ-
uals living downtown had 23 % higher exposures than subur-
ban residents (Rotko et al. 2001). Similarly, in a study of
school children, Rijnders et al. (2001) found that both outdoor
and personal NO2 exposures increased with the level of
urbanicity (and traffic density), with a mean difference in
personal exposures for the highest versus lowest urbanicity
category of 14.6 μg/m3.

Results of the multivariate linear regression analysis
(Table 3) also indicate that urbanicity was the strongest pre-
dictor of exposure concentrations (with the highest coefficient
value and t statistic) among the factors studied. A model using
only the urbanicity variables as predictors (not shown) cap-
tures about 35 % of variance in the individual exposures, a
substantial portion of the total model variability captured in
the more complex model shown. Consideration of interaction
terms between the sociodemographic and urbanicity variables
provides further insight on the influence of residence
urbanicity on the disparities in exposure found above between
sociodemographic groups. Specifically, interaction terms ur-
ban × black, suburban × black, and suburban × below poverty,
all had significant t statistics (significance values of 0.002,
0.005, and 0.004, respectively) and high coefficients (3.2, 3.1,
and 2.5 μg/m3, respectively) when added to the base model
shown. Furthermore, with the interaction terms added, the
black explanatory variable (which now represents blacks liv-
ing in second city and rural regions) was no longer significant,
and the below poverty variable had substantially reduced
significance (0.04 with a reduced coefficient value of
0.9 μg/m3). Additional comparisons of subgroup exposures
(not shown) also indicate that, for those living in second city
and rural regions, the difference in the mean exposure for
blacks versus others is not significant. That is, the exposure
disparity (higher group mean daily exposure concentration)

Table 3 Linear regression model for activity-based exposure
concentration

Explanatory variable Coefficienta (βi, γi) T statistic Significance

Constantb (β0) 11.5 35 3e-180

Black 1.2 2.9 3e-3

Below poverty 1.7 4.3 2e-5

Middle incomec 1.2 4.7 2e-6

Urban 8.3 23 1e-98

Suburban 3.4 11 8e-25

Second city 2.6 7.5 1e-13

Time away from
residence

0.2 6.8 1e-11

Goodness of fit

R2 0.40
Adjusted R2 0.39

Number of cases 1,120

a The regression model is CA (μg/m3 )=β0+β1Xc1+β2Xc2+…γ1Xt1+
γ2Xt2+…+ε, where Xci∈{1,0} are the binary variables and Xti are the
continuous variables. Only the time variable was entered as a continuous
variable (with units of hours). βi have units of μg/m

3 , γi have units of
(μg/m3 )·h
b The constant concentration represents exposures for people who are
nonblack with incomes over $75,000, who live in town/rural areas and
did not travel on the sample day
cMiddle income refers to households with income above the poverty
threshold but less than $75,000
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found here for the black group on average, above, is due to
both higher exposures for the urban and suburban black
population and higher residence urbanicity for the black pop-
ulation in the study area. Residence urbanicity classification
also explains some of the disparity between economic groups,
but the result is more complicated, as an urban below poverty
interaction term was not found to contribute significantly, but
the suburban below poverty term was.

Although it is known that residence urbanicity is associated
with increased exposure, the reasons for this are not well
understood. One contributing reason that has been explored
extensively is the presence of higher concentrations of pollut-
ants in urban versus rural areas. We can clearly see in com-
paring Figs. 3 and 2d that NOx concentration is generally
higher in urban versus rural areas throughout the day.
However, we look here at the additional role of activity, with
a focus on travel activity. Figure 6 providesNOx concentration
and exposure distributions categorized by activity-location
types (at-residence, nonresidential, and in-travel) for the sub-
sample (n=975) of person-day records that included some
activity in each category on the survey day. The mean (time-
weighted) concentration is highest (19 μg/m3) for the in-travel
activity category and lowest (16 μg/m3) for the at-residence
category. That is, ambient concentrations were higher at the
locations of nonresidential and travel activities (at least during
the times when our sample population was located there).
However, mean exposures (μg/m3)·h are lower for travel
and nonresidential activities, as less time is spent in these
activities (see Table 1). Overall, the group mean daily

exposure concentration increases for those who travel more
(Fig. 5b). Confidence intervals for the categorical means
(Table 2) indicate significantly different group mean exposure
concentrations for daily activity records with more than
60 min of travel time versus those with no travel. Our multi-
variate linear regression (Table 3) also indicates a small in-
crease in exposure concentration with increased daily time
away from the residence location (travel time plus time at
nonresidential locations), with concentrations increasing by
0.2 μg/m3 per hour of total daily time. Hence, although
residence location remains a better predictor of daily exposure
concentration than does time away from the residence (or time
travelling), these activity times may play a role.

These results are consistent with those of other recent
studies indicating the importance of exposures during travel.
de Nazelle et al. (2013) found that travel activities contributed
24 % of the total daily intake of NO2. Dons et al. (2012, 2011)
found that transport time accounted for 21 % of black carbon
exposures and identified transport activity as a primary reason
for differences in exposure between family members. Zhang
and Batterman (2013) also recently found that increased traffic
congestion led to greater population health risks; for the on-
road population, this was due in part to increased transport
times.We found the contribution of time in travel to be less for
our study area, accounting for 6 % of the total daily exposure
on average, but time at nonresidential locations accounted for
24 %.

From an exposure mitigation perspective, it is known that
higher concentrations of many pollutants in urban areas are

Fig. 6 Cumulative distributions of time-weighted NOX concentration
(μg/m3) (left-side) and NOX exposure (μg/m3)·h (right-side) by activity
type location for all sampled daily records including some activity away

from residence. Summary statistics are provided below each box plot;
95 % confidence intervals around each mean are in parentheses
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largely due to the proximity and spatial concentration of air
pollution sources in urban areas, including car exhaust on
congested roadways, combustion emissions from home
heating, and nearby industrial emissions. Hence, mitigation
policies have focused on reducing emissions from sources
(e.g., through engineering control technologies). However,
reduction in exposures requires reduction in emissions at a
rate outpacing economic and population growth, which has
proved difficult to sustain. Another popular strategy has been
urban design that displaces sources away from where people
live via urban planning and zoning policies (South Coast Air
Quality Management District 2005). However, this strategy
has resulted in collocation of sources with socially disadvan-
taged population groups who cannot afford to live in less
polluted areas (Perlin et al. 2001; Pulido 2000), and with
increases in emission-producing travel necessary for people
to access their homes, places of employment, and services.

Hence, “smart growth” urban design strategies are now
being promoted as potentially mitigating exposures (Office
of Sustainable Communities et al. 2013). Previous work has
suggested that high-density urban growth can potentially help
in reducing the vehicle miles travelled and the overall emis-
sions (Hankey and Marshall 2010; Stone et al. 2009).
However, simply applying land use intensification (or densi-
fication) strategies without making modifications to the
existing transportation infrastructure might increase conges-
tion and lead to higher concentrations in urban areas (Farber
et al. 2009). This could also exacerbate social disparities in
exposures, as many disadvantaged groups disproportionately
live in more dense urban areas (Baum et al. 1999). This
underscores the need for caution in implementing high-
density developments alone. However, another informative
viewpoint may be differences in activity behavior that place
people in spatiotemporal locations of high concentrations.
Particularly interesting from a policy viewpoint are activity
behaviors that are impacted by civic infrastructure. In this
study, we found that average concentrations were higher in
travel and nonresidential activities, and estimated daily expo-
sures were higher for those who travel more. Hence, a focus
on civic infrastructure that reduces time travelling (and other
nonresidential activities) as well as emissions at those loca-
tions may be warranted. Implementation of transit infrastruc-
ture is one such approach, as it can reduce congestion (with
concomitant reductions in emissions) and can reduce the time
spent travelling on congested roadways. However, cost-
competitive transit infrastructure requires high-density devel-
opment (Kenworthy and Laube 1999).

Exposure error

The cumulative distributions of estimated residence-based
daily NOx exposure concentration and exposure error (due
to the use of a residence-based versus activity-based

approach) are shown in Fig. 4. Overall, we found the mean
exposure error [(CA−CR) /CA] to be 3.6 %, with a range of −64
to 58 %. Additionally, for the majority of the sample (56 %),
the error is positive (the activity-based exposure estimate is
larger than the residence-based estimate). There is a small
amount of overlap in the confidence intervals around each
mean, though a paired sample t test suggests statistically
significant differences (p=3e-22). Additionally, for the sub-
sample of person-day records (n=985) that included at least
some travel away from the residence on the survey day, the
mean error is slightly increased (4.4 %). The calculated bias
factors for the full sample and for travelling subsample were
0.85 and 0.82, respectively, indicating that in a health impact
study using residence-based daily exposure estimates, the
relative risk may be underestimated by 15 or 18 % for the
travelling sample.

Mean exposure bias (or error) values observed in our
study are consistent with previously reported results and
suggest the importance of consideration of activity-travel
patterns for exposure estimation. For Metro Vancouver,
Setton et al. (2011) have reported an exposure bias for
residence-based versus activity-based exposure estimates of
0.70 to 0.84 for NO2 (depending on the method used for
concentration interpolation). Further, in a study of Flanders
and Brussels, Dhondt et al. (2012) found small but signif-
icant differences between the mean dynamic (i.e., activity-
based) exposures and residential exposures (21.6 versus
20.98 μg/m3), with a resulting exposure error of 2.9 %.
Similarly, in a Belgian study, Dons et al. (2011) found
that time-activity patterns could account for approximately
30 % of weekly personal mean exposure differences be-
tween a worker and a homemaker from the same house-
hold. While their study does not consider exposure error
explicitly, their findings underscore the importance of
time-activity patterns and their impact on exposures.

Our results suggest that a residence-based approach likely
underestimates exposures for a large proportion of the popu-
lation, resulting in underestimated risks of health impacts of
air pollution. However, for almost half (46 %) of the popula-
tion, exposures and risks may be overestimated using a
residence-based approach. Additionally, although the average
error was found to be 3.6 %, the maximum (absolute) error
was 64 %. Hence, exposure estimation methods that account
for spatiotemporal changes in location and concentration may
be needed for more accurate estimation of exposure and better
health impact assessments. Nonetheless, this does not dis-
count the importance of exposures at the residence location.
Our results above, on the large percentage of time spent at the
residence location (on average) and on the predictive value of
residence urbanicity, are consistent with epidemiological stud-
ies that continue to suggest the value of exposures at residence
location as a predictor for health responses (Brauer et al. 2008;
Gan et al. 2011).
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Social distribution of exposure error

It is interesting to inquire whether estimated exposure error
differs between demographic groups, i.e., whether residence-
based estimates may be systematically biased for specific
segments of the population; systematic biases could lead to
systematic misclassification of exposures by group during
health impact analyses. To address this question, Fig. 7 pro-
vides the cumulative distributions of exposure error for each
of the sociodemographic groups studied above, with statistics
provided in Table 2.

Among the racioethnic groups, exposure errors are largely
positive (underestimation) for the Hispanic and white subpop-
ulations, with the highest variation seen for the Hispanic
group. Results are mixed for the black subgroup, with largely
positive errors, but a substantial proportion in the negative
(overestimation) range. Mean exposure errors were not found
to be significantly different between any of the racioethnic
groups considered. With regard to income, exposure errors are
largely positive (underestimation) for the higher-income (an-
nual income above $75,000) and middle-income groups, with
some negative (overestimation) errors in the below poverty
group.We found the mean exposure errors between the higher
income group significantly different from those for both the
below poverty group and the middle-income group, but dif-
ference between the low and middle income groups was not
significant. Mean exposure error is positive for all age groups
but is highest (most underestimation of exposures) for active
adults (19 and 65 years) and lowest, with least variation, for
the elderly (over 65 years). Mean errors were significantly

different between these two age groups but not between either
of these groups and the child (5–18 years) group.

Residential location appears to be a major determinant of
the direction and the extent of exposure error. As can be
observed from the box plots, the residence-based exposure
concentrations are almost equal to the activity-based exposure
concentrations for a large proportion (50 %) of those living in
urban areas. This suggests that pollutant concentrations at
residential and activity locations may be similar for those
living in urban areas. Moreover, with decreasing density, the
variability in the exposure error increases. Specifically, there is
a greater incidence (and magnitude) of underestimation of
exposures by residence-based estimates in rural regions (and
overestimation in urban regions). Further, the mean exposure
error was found to be significantly different for the individuals
residing in urban regions and the individuals residing in the
suburban, second city, and rural regions. These results suggest
that using residence-based estimates may lead to underestima-
tion of NOx exposures (and resulting health effects) for those
living in low-density regions, when compared to those in
high-density urban areas.

Exposure error also increases, both in magnitude and var-
iability, with an increase in the travel time. Further, an increase
in the travel time leads to higher potential for underestimation
of exposures. As such, ignoring activity-travel patterns for
individuals who travel for a significant portion of their daily
time could lead to the underestimation of health effect
estimates.

In summary, the mean exposure errors are high for the age
groups 19–65, above poverty groups, Hispanics, rural

Fig. 7 Cumulative distributions of exposure error for population sub-
groups related to a personal attributes and b urban characteristics. Middle
income refers to households with income above the poverty threshold but

with incomes less than $75 thousand (k). Note that the racioethnic
subgroup populations are not exclusive, and populations have overlap-
ping individuals
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residents, and groups with travel time greater than 60 min.
Specifically, the age-based differences in the exposure error
may be a manifestation of the differences in the propensity to
travel among the different age groups (children and elderly are
likely to travel less). Within the context of income groups and
rural residents, their travel patterns may be a contributing
factor for the high exposure error (their daily activity patterns
may lead them into more polluted areas compared to their
residential locations). For the groups with longer travel times,
spatial variation in concentrations could be a contributing
factor for such large exposure error. These results suggest that
residence-based estimates may underestimate exposures for
the advantaged population groups, rather than vulnerable
groups (with the exception of Hispanics).

Further, our results suggest that the residence-based ap-
proach may not necessarily lead to severely flawed exposure
estimates for the most vulnerable subgroups of the population.
This provides support for previous studies that did not con-
sider activity-travel patterns in exposure analysis. In the ab-
sence of data on activity-travel patterns, such residence-based
approaches may not necessarily lead to significantly biased
exposure estimates, at least for a majority of the most vulner-
able population segments. However, there are individuals
within the susceptible groups who are still prone to either
underestimation or overestimation of exposures using the
residence-based approach. Additionally, the error may be
important for people whose occupations require them to travel
or be present for significant portions of time on roadways
(e.g., sales personnel, highway workers, etc.).

To our knowledge, there is little previous literature on the
socioeconomic distributions of exposure error within the
USA. Limited evidence on this topic is available from
Europe (Dhondt et al. 2012). While it is difficult to compare
the social distributions of exposure error between these studies
(as groupwise exposure errors are not reported in their study),
we are able to observe a few similarities. Specifically, they
also report that exposure error in rural locations is significantly
higher compared to urban locations. Dhondt et al. (2012) also
reported that rural zones had dynamic NO2 exposure values
that could be 15 % higher than the static values. Our results
above provide differences in the variability of exposure error
between urban and rural regions and the distribution of expo-
sure error among population subgroups.

Limitations

Some limitations affect the robustness of these findings. First,
the travel survey data used here may not be representative of
the true spatiotemporal distribution of activities. Although the
survey sample size is quite large, the county sample may not
be large enough to capture the full spatial coverage necessary.
Use of activity-based travel demand models for exposure
analysis (Beckx et al. 2009; Dhondt et al. 2013; Dons et al.

2014; Hatzopoulou and Miller 2010) is one promising ap-
proach for generating the larger sample sizes that are needed.
Second, exposures during travel activity were estimated using
concentrations along the shortest route, as path data were not
available. Although this is a reasonable approach, computed
routes may not coincide with the actual travel paths on the
particular sampled person-day. Third, due to limitations in the
temporal availability of the input data sets, the travel data are
from a 2009 survey, while the concentrations are based on the
2002 data. Hence, results are not expected to represent expo-
sures for a particular year. Fourth, findings are limited by the
use of estimated ambient pollutant concentrations for expo-
sure analysis, rather than indoor, microenvironmental, or per-
sonal measurements. In the case of important indoor or per-
sonal sources, this could poorly represent exposures. Fifth, we
have only directly considered one pollutant (NOx) in the
analysis here. It is well known that spatial and temporal
concentration patterns and scales of variability differ by pol-
lutant (e.g., Bhugwant and Brémaud 2001). These differences
could result in different distributions of exposure and expo-
sure error. We expect the results here to be somewhat infor-
mative to understanding exposures to primary pollutants with
substantial traffic emissions, but not to pollutants with sub-
stantial secondary formation or important emissions sources
that are not collocated with traffic (such as ozone and formal-
dehyde). Sixth, defining urbanicity based on a single contex-
tual population density measure could limit our findings.
While this definition incorporates a few key characteristics
of urban form, there is a need to consider additional measures
including transportation infrastructure characteristics in defin-
ing urbanicity. Seventh, this work has focused on investigat-
ing inequality in exposures (and potential health outcomes)
between population groups characterized by race, ethnicity,
and income (and residence urbanicity). However, we note that
there are many indices of social disadvantage and inequality
that have been used in air pollution exposure and health
impact studies; appropriate indicators likely depend on the
social and political context. Further, there are many individual
and group factors other than differences in exposures that can
lead to differences in health outcomes (O’Neill et al. 2003);
some of these are access to health care, overall health,
smoking, diet, exercise, occupation, and genetics. Finally, it
is well established that group averages do not necessarily
represent the exposures of individuals in that group. Hence,
the social disparity findings and implications can only address
group level differences.

Conclusions

In this study, we estimated ambient NOx exposures for resi-
dents of Hillsborough County, FL, using activity-travel data
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(from the National Household Travel Survey) matched to the
spatially resolved diurnal cycle of NOx concentrations. Travel
routes were estimated based on the shortest-time path. We
examined the social distribution of these daily activity-based
exposures. Finally, we compared our activity-based estimates
with those that result from using only residence location.

The findings of this work include the following:

& The Hillsborough County travel survey sample population
spent little time in urban block groups. The time densities
in urban block groups are larger for nonresidential than
residential activities.

& The diurnal cycle of NOx concentration in the study area
exhibited typical morning and evening peaks, consistent
with increased NOx emissions from traffic during com-
mute hours. Spatially, concentrations were highest near
roadways and in urban areas throughout the day.

& The mean daily activity-based exposure concentration for
the study sample was found to be 17 μg/m3, with values
for individual person-day records ranging from 7.0 to
43 μg/m3.

& The black, Hispanic, and low-income subgroups had
higher mean estimated activity-based exposures than com-
parison groups. The mean disparity in exposure between
the black and white group is larger (4 μg/m3) than that
between the below poverty and high-income group (2 μg/
m3). However, regression results show that income below
poverty is associated with a higher increase in exposure
than black heritage alone, while Hispanic status was not
found to be a significant predictor.

& The highest group mean exposure concentrations
(22 μg/m3) were seen for those living in urban regions.
Having an urban versus rural residence was also associat-
ed with the largest increase in exposure concentration in
the regression (8.3 μg/m3). Furthermore, the residence
urbanicity interaction variables largely explained the larg-
est disparities found between sociodemographic groups.
Being black while living in urban or suburban areas and
living below poverty in suburban locations were each
associated with higher exposures.

& Time in travel and other nonresidential activities was also
associated with higher activity-based exposure concentra-
tions, specifically 0.2 μg/m3 per hour spent away from
home. This is due to the higher concentrations at these
locations.

& The overall mean exposure error resulting from using
residence-based versus activity-based estimation was
3.6 % here, with residence-based estimate lower for most
of the sample population.

& The mean group exposure errors were highest for person-
days with more than an hour of travel, people with higher
household income, people living in rural areas, adults aged

19–65, and Hispanics. This suggests that studies that use
residence-based exposure estimation may not be severely
misclassifying exposures for disadvantaged and suscepti-
ble groups including blacks, low-income households, and
elderly, at least on average.

In summary, this work demonstrates an approach for using
available travel survey data and concentration modeling re-
sults for spatiotemporally resolved estimation of activity-
based exposures. Novel contributions include the presentation
and use of a spatially distributed activity time density map
applied to exposure analysis and the examination of the social
distribution of errors in exposure. Our results suggest that
activity-based exposure estimation may be important for
assessing exposures of individuals, but a residence-based
approach may not necessarily lead to substantially biased
exposure estimates for the most vulnerable groups, on aver-
age. Within the context of previous work, the results here
continue to reveal the presence of social disparities in expo-
sure, and possibly exposure-related health risks, in the study
area, even after accounting for spatiotemporal population
movement. Further, they confirm the importance of the
urbanicity of residence location (and to a lesser degree, travel
time) in influencing exposures and their social distribution.
This supports the need for urban design policies that ensure
that densification is accompanied by civil infrastructure (e.g.,
public transit) that decreases emissions in urban areas as well
as time spent travelling, particularly for disadvantaged groups.
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