168 research outputs found

    Rotationally resolved spectroscopy of dwarf planet (136472) Makemake

    Full text link
    Context. Icy dwarf planets are key for studying the chemical and physical states of ices in the outer solar system. The study of secular and rotational variations gives us hints of the processes that contribute to the evolution of their surface. Aims. The aim of this work is to search for rotational variability on the surface composition of the dwarf planet (136472) Makemake Methods. We observed Makemake in April 2008 with the medium-resolution spectrograph ISIS, at the William Herschel Telescope (La Palma, Spain) and obtained a set of spectra in the 0.28 - 0.52 {\mu}m and 0.70 - 0.95 {\mu}m ranges, covering 82% of its rotational period. For the rotational analysis, we organized the spectra in four different sets corresponding to different rotational phases, and after discarding one with low signal to noise, we analyzed three of them that cover 71% of the surface. For these spectra we computed the spectral slope and compared the observed spectral bands of methane ice with reflectances of pure methane ice to search for shifts of the center of the bands, related to the presence of CH 4 /N 2 solid solution. Results. All the spectra have a red color with spectral slopes between 20%/1000 {\AA} and 32%/1000 {\AA} in accordance with previously reported values. Some variation in the spectral slope is detected, pointing to the possibility of a variation in the surface content or the particle size of the solid organic compound. The absorption bands of methane ice present a shift toward shorter wavelengths, indicating that methane (at least partially) is in solid solution with nitrogen. There is no variation within the errors of the shifts with the wavelength or with the depth of the bands, so there is no evidence of variation in the CH 4 /N 2 mixing ratio with rotation. By comparing with all the available data in the literature, no secular compositional variations between 2005 and 2008 is found

    Near-infrared spectroscopy of 1999 JU3, the target of the Hayabusa 2 mission

    Get PDF
    Context. Primitive asteroids contain complex organic material and ices relevant to the origin of life on Earth. These types of asteroids are the target of several-sample return missions to be launched in the next years. 1999 JU3 is the target of the Japanese Aerospace Exploration Agency's Hayabusa 2 mission. Aims. 1999 JU3 has been previously identified as a C-class asteroid. Spectroscopic observations at longer wavelengths will help to constrain its composition. Methods. We obtained spectroscopy of 1999 JU3 from 0.85 to 2.2 microns, with the 3.6 m Telescopio Nazionale Galileo using the low resolution mode of the Near Infrared Camera Spectrograph. Results. We present a near-infrared spectrum of 1999 JU3 from 0.85 to 2.2microns that is consistent with previously published spectra and with its C-type classification. Conclusions. Our spectrum confirms the primitive nature of 1999 JU3 and its interest as target of the sample-return mission Hayabusa 2.Comment: Research Note: 3 pages 1 Figure Received December 2012; accepted 4 March 201

    Visible spectroscopy in the neighborhood of 2003 EL61

    Full text link
    Context: The recent discovery of a group of trans-neptunian objects (TNOs) in a narrow region of the orbital parameter space and with surfaces composed of almost pure water ice, being 2003 EL61 its largest member, promises new and interesting results about the formation and evolution of the trans-neptunian belt (TNb) and the outer Solar System. Aims: The aim of this paper is to obtain information of the surface properties of two members of this group ((24835) 1995 SM55, (120178) 2003 OP32) and three potential members (2003 UZ117, (120347) 2004 SB60 and 2005 UQ513) and to use that in order to confirm or reject their association. Methods: We obtained visible spectra of five TNOs using the 3.58m Telescopio Nazionale Galileo at the ''Roque de los Muchachos Observatory'' (La Palma, Spain) Results: The spectra of the five TNOs are featureless within the uncertainties and with colors from slightly blue to red (-2< S'<18%/0.1microns). No signatures of any absorption are found. Conclusions: We confirm the association of 1995 SM55 and 2003 OP32 with the group of 2003 EL61 as their spectra are almost identical to that of 2003 EL61. Only one of the three candidates, 2003 UZ117, can be considered as a possible member of the EL61-group, as its visible spectrum is compatible with a spectrum of a surface composed of almost pure water ice and no complex organics. The other two, 2004 SB60 and 2005 UQ513 are red and must be considered as interlopers.Comment: 5 pages, 2 figure

    Rotationally resolved spectroscopy of (20000) Varuna in the near-infrared

    Full text link
    Models of the escape and retention of volatiles by minor icy objects exclude any presence of volatile ices on the surface of TNOs smaller than ~1000km in diameter at the typical temperature in this region of the solar system, whereas the same models show that water ice is stable on the surface of objects over a wide range of diameters. Collisions and cometary activity have been used to explain the process of surface refreshing of TNOs and Centaurs. These processes can produce surface heterogeneity that can be studied by collecting information at different rotational phases. The aims of this work are to study the surface composition of (20000)Varuna, a TNO with a diameter ~650km and to search for indications of rotational variability. We observed Varuna during two consecutive nights in January 2011 with NICS@TNG obtaining a set of spectra covering the whole rotation period of Varuna. After studying the spectra corresponding to different rotational phases, we did not find any indication of surface variability. In all the spectra, we detect an absorption at 2{\mu}m, suggesting the presence of water ice on the surface. We do not detect any other volatiles on the surface, although the S/N is not high enough to discard their presence. Based on scattering models, we present two possible compositions compatible with our set of data and discuss their implications in the frame of the collisional history of the Kuiper Belt. We find that the most probable composition for the surface of Varuna is a mixture of amorphous silicates, complex organics, and water ice. This composition is compatible with all the materials being primordial. However, our data can also be fitted by models containing up to a 10% of methane ice. For an object with the characteristics of Varuna, this volatile could not be primordial, so an event, such as an energetic impact, would be needed to explain its presence on the surface.Comment: 6 pages, 5 figures, to be published in A&

    Disrupted asteroid P/2016 G1. II. Follow-up observations from the Hubble Space Telescope

    Full text link
    After the early observations of the disrupted asteroid P/2016 G1 with the 10.4m Gran Telescopio Canarias (GTC), and the modeling of the dust ejecta, we have performed a follow-up observational campaign of this object using the Hubble Space Telescope (HST) during two epochs (June 28 and July 11, 2016). The analysis of these HST images with the same model inputs obtained from the GTC images revealed a good consistency with the predicted evolution from the GTC images, so that the model is applicable to the whole observational period from late April to early July 2016. This result confirms that the resulting dust ejecta was caused by a relatively short-duration event with onset about 350 days before perihelion, and spanning about 30 days (HWHM). For a size distribution of particles with a geometric albedo of 0.15, having radii limits of 1 μ\mum and 1 cm, and following a power-law with index --3.0, the total dust mass ejected is \sim2×\times107^7 kg. As was the case with the GTC observations, no condensations in the images that could be attributed to a nucleus or fragments released after the disruption event were found. However, the higher limiting magnitude reachable with the HST images in comparison with those from GTC allowed us to impose a more stringent upper limit to the observed fragments of \sim30 m.Comment: 10 pages, 2 figures Accepted by Astronomical Journal, Nov. 2, 201

    Additional spectra of asteroid 1996 FG3, backup target of the ESA MarcoPolo-R mission

    Get PDF
    Near-Earth binary asteroid (175706) 1996 FG3 is the current backup target of the ESA MarcoPolo-R mission, selected for the study phase of ESA M3 missions. It is a primitive (C-type) asteroid that shows significant variation in its visible and near-infrared spectra. Here we present new spectra of 1996 FG3 and we compare our new data with other published spectra, analysing the variation in the spectral slope. The asteroid will not be observable again over the next three years at least. We obtained the spectra using DOLORES and NICS instruments at the Telescopio Nazionale Galileo (TNG), a 3.6m telescope located at El Roque de los Muchachos Observatory in La Palma, Spain. To compare with other published spectra of the asteroid, we computed the spectral slope S', and studied any plausible correlation of this quantity with the phase angle (alpha). In the case of visible spectra, we find a variation in spectral slope of Delta S' = 0.15 +- 0.10 %/10^3 A/degree for 3 < alpha < 18 degrees, in good agreement with the values found in the literature for the phase reddening effect. In the case of the near-infrared, we find a variation in the slope of Delta S' = 0.04 +- 0.08 %/10^3 A/degree for 6 < alpha < 51 degrees. Our computed variation in S' agrees with the only two values found in the literature for the phase reddening in the near-infrared. The variation in the spectral slope of asteroid 1996 FG3 shows a trend with the phase angle at the time of the observations, both in the visible and the near-infrared. It is worth noting that, to fully explain this spectral variability we should take into account other factors, like the position of the secondary component of the binary asteroid 1999 FG3 with respect to the primary, or the spin axis orientation at the time of the observations. More data are necessary for an analysis of this kind.Comment: 4 pages, 3 figures, Accepted in A&A 25 June 201

    The Spectrum of Pluto, 0.40 - 0.93 μ\mum I. Secular and longitudinal distribution of ices and complex organics

    Full text link
    Context. During the last 30 years the surface of Pluto has been characterized, and its variability has been monitored, through continuous near-infrared spectroscopic observations. But in the visible range only few data are available. Aims. The aim of this work is to define the Pluto's relative reflectance in the visible range to characterize the different components of its surface, and to provide ground based observations in support of the New Horizons mission. Methods. We observed Pluto on six nights between May and July 2014, with the imager/spectrograph ACAM at the William Herschel Telescope (La Palma, Spain). The six spectra obtained cover a whole rotation of Pluto (Prot = 6.4 days). For all the spectra we computed the spectral slope and the depth of the absorption bands of methane ice between 0.62 and 0.90 μ\mum. To search for shifts of the center of the methane bands, associated with dilution of CH4 in N2, we compared the bands with reflectances of pure methane ice. Results. All the new spectra show the methane ice absorption bands between 0.62 and 0.90 μ\mum. The computation of the depth of the band at 0.62 μ\mum in the new spectra of Pluto, and in the spectra of Makemake and Eris from the literature, allowed us to estimate the Lambert coefficient at this wavelength, at a temperature of 30 K and 40 K, never measured before. All the detected bands are blue shifted, with minimum shifts in correspondence with the regions where the abundance of methane is higher. This could be indicative of a dilution of CH4:N2 more saturated in CH4. The longitudinal and secular variations of the parameters measured in the spectra are in accordance with results previously reported in the literature and with the distribution of the dark and bright material that show the Pluto's albedo maps from New Horizons.Comment: This manuscript may change and improve during the reviewing process. The data reduction and calibration is reliable and has been checked independently using different reduction approaches. The data will be made publicily available when the paper is accepted. If you need them before, please, contact the autho

    Visible spectroscopy of 2003 UB313: Evidence for N2 ice on the surface of the largest TNO?

    Get PDF
    The recent discovery of two large trans-Neptunian objects (TNOs) 2003 UB313 and 2005 FY9, with surface properties similar to those of Pluto, provides an exciting new laboratory for the study of processes considered for Pluto and Triton: volatile mixing and transport; atmospheric freeze-out and escape, ice chemistry, and nitrogen phase transitions. We studied the surface composition of TNO 2003 UB313, the first known TNO larger than Pluto. We report a visible spectrum covering the 0.35-0.95 microns spectral range, obtained with the 4.2m William Herschel Telescope at "El Roque de los Muchachos" Observatory (La Palma, Spain). The visible spectrum of this TNO presents very prominent absorpt- ions bands formed in solid CH4. At wavelengths shorter than 0.6 micron the spectrum is almost featureless and slightly red (S'=4%). The icy-CH4 bands are significantly stronger than those of Pluto and slightly weaker than those observed in the spectrum of another giant TNO, 2005 FY9, implying that methane is more abundant on its surface than in Pluto's and close to that of the surface of 2005 FY9. A shift of 15 +/-3 A relative to the position of the bands of the spectrum of laboratory CH4 ice is observed in the bands at larger wavelengths (e.g. around 0.89 microns), but not at shorter wavelengths (the band around 0.73 microns is not shifted) this may be evidence for a vertical compositional gradient. Purer methane could have condensed first while 2003 UB313 moved towards aphelion during the last 200 years, and as the atmosphere gradually collapsed, the composition became more nitrogen-rich as the last, most volatile components condensed, and CH4 diluted in N2 is present in the outer surface layers.Comment: Accepted in A&
    corecore