5 research outputs found

    Building a needs-based curriculum in data science and artificial intelligence: case studies in Indonesia, Sri Lanka, and Thailand

    Get PDF
    Indonesia and Thailand are middle-income countries within the South-East Asia region. They have well-established and growing higher education systems, increasingly focused on quality improvement. However, they fall behind regional leaders in educating people who design, develop, deploy and train data science and artificial intelligence (DS&AI) based technology, as evident from the technological market, regionally dominated by Singapore and Malaysia, while the region as a whole is far behind China. A similar situation holds also for Sri Lanka, in the South Asia region technologically dominated by India. In this paper, we describe the design of a master's level curriculum in data science and artificial intelligence using European experience on building such curricula. The design of such a curriculum is a nontrivial exercise because there is a constant trade-off between having a sufficiently broad academic curriculum and adequately meeting regional needs, including those of industrial stakeholders. In fact, findings from a gap analysis and assessment of needs from three case studies in Indonesia, Sri Lanka, and Thailand comprise the most significant component of our curriculum development process.The authors would like to thank the European Union Erasmus+ programme which provided funding through the Capacity Building Higher Education project on Curriculum Development in Data Science and Artificial Intelligence, registered under the reference number 599600-EPP-1-2018-1-TH-EPPKA2-CBHE-JP

    Digital Image Analysis of Cells : Applications in 2D, 3D and Time

    No full text
    Light microscopes are essential research tools in biology and medicine. Cell and tissue staining methods have improved immensely over the years and microscopes are now equipped with digital image acquisition capabilities. The image data produced require development of specialized analysis methods. This thesis presents digital image analysis methods for cell image data in 2D, 3D and time sequences. Stem cells have the capability to differentiate into specific cell types. The mechanism behind differentiation can be studied by tracking cells over time. This thesis presents a combined segmentation and tracking algorithm for time sequence images of neural stem cells.The method handles splitting and merging of cells and the results are similar to those achieved by manual tracking. Methods for detecting and localizing signals from fluorescence stained biomolecules are essential when studying how they function and interact. A study of Smad proteins, that serve as transcription factors by forming complexes and enter the cell nucleus, is included in the thesis. Confocal microscopy images of cell nuclei are delineated using gradient information, and Smad complexes are localized using a novel method for 3D signal detection. Thus, the localization of Smad complexes in relation to the nuclear membrane can be analyzed. A detailed comparison between the proposed and previous methods for detection of point-source signals is presented, showing that the proposed method has better resolving power and is more robust to noise. In this thesis, it is also shown how cell confluence can be measured by classification of wavelet based texture features. Monitoring cell confluence is valuable for optimization of cell culture parameters and cell harvest. The results obtained agree with visual observations and provide an efficient approach to monitor cell confluence and detect necrosis. Quantitative measurements on cells are important in both cytology and histology. The color provided by Pap (Papanicolaou) staining increases the available image information. The thesis explores different color spaces of Pap smear images from thyroid nodules, with the aim of finding the representation that maximizes detection of malignancies using color information in addition to quantitative morphological parameters. The presented methods provide useful tools for cell image analysis, but they can of course also be used for other image analysis applications

    Seeded watersheds for combined segmentation and tracking of cells

    No full text
    Abstract. Watersheds are very powerful for image segmentation, and seeded watersheds have shown to be useful for object detection in images of cells in vitro. This paper shows that if cells are imaged over time, segmentation results from a previous time frame can be used as seeds for watershed segmentation of the current time frame. The seeds from the previous frame are combined with morphological seeds from the current frame, and over-segmentation is reduced by rule-based merging, propagating labels from one time-frame to the next. Thus, watershed segmentation is used for segmentation as well as tracking of cells over time. The described algorithm was tested on neural stem/progenitor cells imaged using time-lapse microscopy. Tracking results agreed to 71% to manual tracking results. The results were also compared to tracking based on solving the assignment problem using a modified version of the auction algorithm
    corecore