58 research outputs found

    Optimal on-off cooperative manoeuvers for long-term satellite cluster flight

    Get PDF
    When a group of satellites is equipped with a particulary simple propul- sion system, e.g. cold-gas thrusters, constraints on the thrust level and total propellant mass renders cluster-keeping extremely challenging. This is even more pronounced in disaggregated space architectures, in which a satellite is formed by clustering a number of heterogenous, free-flying modules. The research described in this paper develops guidance laws aimed at keeping the relative distances between the cluster modules bounded for long mission lifetimes, typically more than a year, while utilizing constant-magnitude low-thrust, with a characteristic on-off profile. A cooperative guidance law capable of cluster establishment and maintenance under realistic environ- mental perturbations is developed. The guidance law is optimized for fuel consumption, subject to relative distance constraints. Some of the solutions found to the optimal guidance problem require only a single maneuver arc to keep the cluster within relatively close distances for an entire year

    Gauge Theory for Finite-Dimensional Dynamical Systems

    Full text link
    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This theory has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems with implications to numerical integration of differential equations. We distinguish between rescriptive and descriptive gauge symmetry. Rescriptive gauge symmetry is, in essence, re-scaling of the independent variable, while descriptive gauge symmetry is a Yang-Mills-like transformation of the velocity vector field, adapted to finite-dimensional systems. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently "disordered" flow into a regular dynamical process, and that there exists a remarkable connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse engineering and scientific fields, including quantum mechanics, chemistry, rigid-body dynamics and information theory

    Periodic Corrections in Secular Milankovitch Theory Applied to Passive Debris Removal

    Get PDF
    International audienceMost cartographic stability maps advocated for use in the new passive debris removal ideology based on orbital resonances are obtained through crude averaging methods. This means that from an operational perspective, its not clear where in the osculating space one should actually target to place the satellite on a natural disposal trajectory. It is also not obvious what effects the short-periodic terms may have on these re-entry solutions. We will derive the periodic corrections terms for the dominant perturbations affecting Earth satellites and investigate these considerations

    Nonsingular vectorial reformulation of the short-period corrections in Kozai’s oblateness solution

    Get PDF
    International audienceWe derive a new analytical solution for the first-order, short-periodic perturbations due to planetary oblateness and systematically compare our results to the classical Brouwer–Lyddane transformation. Our approach is based on the Milankovitch vectorial elements and is free of all the mathematical singularities. Being a non-canonical set, our derivation follows the scheme used by Kozai in his oblateness solution. We adopt the mean longitude as the fast variable and present a compact power-series solution in eccentricity for its short-periodic perturbations that relies on Hansen’s coefficients. We also use a numerical averaging algorithm based on the fast-Fourier transform to further validate our new mean-to-osculating and inverse transformations. This technique constitutes a new approach for deriving short-periodic corrections and exhibits performance that are comparable to other existing and well-established theories, with the advantage that it can be potentially extended to modeling non-conservative orbit perturbations

    Periodic Corrections in Secular Milankovitch Theory Applied to Passive Debris Removal

    Get PDF
    International audienceMost cartographic stability maps advocated for use in the new passive debris removal ideology based on orbital resonances are obtained through crude averaging methods. This means that from an operational perspective, its not clear where in the osculating space one should actually target to place the satellite on a natural disposal trajectory. It is also not obvious what effects the short-periodic terms may have on these re-entry solutions. We will derive the periodic corrections terms for the dominant perturbations affecting Earth satellites and investigate these considerations

    Modern astrodynamics

    No full text

    Analytical Derivation of Single-Impulse Maneuvers Guaranteeing Bounded Relative Motion Under J2

    Full text link
    Keeping a cluster of satellites within bounded relative distances requires active control, because natural perturbations (the most significant of which is the J2 term in the geopotential) tend to move the satellites apart. Whereas there is abundant literature on controlling the relative drift using multiple impulsive maneuvers and approximate astrodynamical models involving mean orbital elements, the works that attempt to minimize the number of impulses while using the inertial position and velocity vectors of the satellites are scarce. In this paper, single-impulse distance-keeping maneuvers are derived, without approximating the J2-perturbed dynamics. An analytical derivation of minimum-fuel impulsive maneuvers between equatorial orbits is provided, while relying on radial period and orbital angle matching conditions. Then, a continuation procedure is used to obtain single-impulse relative distance control between inclined orbits. The development of the impulsive maneuvers relies on the inertial position and velocity vectors of the satellites and does not involve mean elements. In each step, necessary and sufficient conditions for the existence of a single-impulse maneuver are provided. The results are illustrated using a number of realistic scenarios, such as a simulation that includes a 21×21 gravitational model, drag, and lunisolar attraction

    Satellite onboard orbit propagation using Deprit’s radial intermediary

    No full text
    Short-term satellite onboard orbit propagation is required when GPS position measurements are unavailable due to an obstruction or a malfunction. In this paper, it is shown that natural intermediary orbits of the main problem provide a useful alternative for the implementation of short-term onboard orbit propagators instead of direct numerical integration. Among these intermediaries, Deprits radial intermediary (DRI), obtained by the elimination of the parallax transformation, shows clear merits in terms of computational efficiency and accuracy. Indeed, this proposed analytical solution is free from elliptic integrals, as opposed to other intermediaries, thus speeding the evaluation of corresponding expressions. The only remaining equation to be solved by iterations is the Kepler equation, which in most of cases does not impact the total computation time. A comprehensive performance evaluation using Monte-Carlo simulations is performed for various orbital inclinations, showing that the analytical solution based on DRI outperforms a DormandPrince fixed-step RungeKutta integrator as the inclination grows

    Analytical solutions for J 2-perturbed unbounded equatorial orbits

    Full text link
    While solutions for bounded orbits about oblate spheroidal planets have been presented before, similar solutions for unbounded motion are scarce. This paper develops solutions for unbounded motion in the equatorial plane of an oblate spheroidal planet, while taking into account only the J [SUB]2[/SUB] harmonic in the gravitational potential. Two cases are distinguished: A pseudo-parabolic motion, obtained for zero total specific energy, and a pseudo-hyperbolic motion, characterized by positive total specific energy. The solutions to the equations of motion are expressed using elliptic integrals. The pseudo-parabolic motion unveils a new orbit, termed herein the fish orbit, which has not been observed thus far in the perturbed two-body problem. The pseudo-hyperbolic solutions show that significant differences exist between the Keplerian flyby and the flyby performed under the the J [SUB]2[/SUB] zonal harmonic. Numerical simulations are used to quantify these differences
    corecore