1,115 research outputs found

    A complete characterisation of the heralded noiseless amplification of photons

    Full text link
    Heralded noiseless amplifcation of photons has recently been shown to provide a means to overcome losses in complex quantum communication tasks. In particular, to overcome transmission losses that could allow for the violation of a Bell inequality free from the detection loophole, for Device Independent Quantum Key Distribution (DI-QKD). Several implementations of a heralded photon amplifier have been proposed and the first proof of principle experiments realised. Here we present the first full characterisation of such a device to test its functional limits and potential for DI-QKD. This device is tested at telecom wavelengths and is shown to be capable of overcoming losses corresponding to a transmission through 20km20\, \rm km of single mode telecom fibre. We demonstrate heralded photon amplifier with a gain >100>100 and a heralding probability >83>83 % , required by DI-QKD protocols that use the Clauser-Horne-Shimony-Holt (CHSH) inequality. The heralded photon amplifier clearly represents a key technology for the realisation of DI-QKD in the real world and over typical network distances.Comment: 9 pages, 4 figure

    Nonuniform collective dissolution of bubbles in regular pore networks

    Get PDF
    Understanding the evolution of solute concentration gradients underpins the prediction of porous media processes limited by mass transfer. Here, we present the development of a mathematical model that describes the dissolution of spherical bubbles in two-dimensional regular pore networks. The model is solved numerically for lattices with up to 169 bubbles by evaluating the role of pore network connectivity, vacant lattice sites and the initial bubble size distribution. In dense lattices, diffusive shielding prolongs the average dissolution time of the lattice, and the strength of the phenomenon depends on the network connectivity. The extension of the final dissolution time relative to the unbounded (bulk) case follows the power-law function, Bk/ℓ, where the constant ℓ is the inter-bubble spacing, B is the number of bubbles, and the exponent k depends on the network connectivity. The solute concentration field is both the consequence and a factor affecting bubble dissolution or growth. The geometry of the pore network perturbs the inward propagation of the dissolution front and can generate vacant sites within the bubble lattice. This effect is enhanced by increasing the lattice size and decreasing the network connectivity, yielding strongly nonuniform solute concentration fields. Sparse bubble lattices experience decreased collective effects, but they feature a more complex evolution, because the solute concentration field is nonuniform from the outset

    Dipolar ground state of planar spins on triangular lattices

    Full text link
    An infinite triangular lattice of classical dipolar spins is usually considered to have a ferromagnetic ground state. We examine the validity of this statement for finite lattices and in the limit of large lattices. We find that the ground state of rectangular arrays is strongly dependent on size and aspect ratio. Three results emerge that are significant for understanding the ground state properties: i) formation of domain walls is energetically favored for aspect ratios below a critical valu e; ii) the vortex state is always energetically favored in the thermodynamic limit of an infinite number of spins, but nevertheless such a configuration may not be observed even in very large lattices if the aspect ratio is large; iii) finite range approximations to actual dipole sums may not provide the correct ground sta te configuration because the ferromagnetic state is linearly unstable and the domain wall energy is negative for any finite range cutoff.Comment: Several short parts have been rewritten. Accepted for publication as a Rapid Communication in Phys. Rev.

    Genome Editing and Muscle Stem Cells as a Therapeutic Tool for Muscular Dystrophies

    Get PDF
    PURPOSE OF REVIEW: Muscular dystrophies are a group of severe degenerative disorders characterized by muscle fiber degeneration and death. Therapies designed to restore muscle homeostasis and to replace dying fibers are being experimented, but none of those in clinical trials are suitable to permanently address individual gene mutation. The purpose of this review is to discuss genome editing tools such as CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated), which enable direct sequence alteration and could potentially be adopted to correct the genetic defect leading to muscle impairment. RECENT FINDINGS: Recent findings show that advances in gene therapy, when combined with traditional viral vector-based approaches, are bringing the field of regenerative medicine closer to precision-based medicine. SUMMARY: The use of such programmable nucleases is proving beneficial for the creation of more accurate in vitro and in vivo disease models. Several gene and cell-therapy studies have been performed on satellite cells, the primary skeletal muscle stem cells involved in muscle regeneration. However, these have mainly been based on artificial replacement or augmentation of the missing protein. Satellite cells are a particularly appealing target to address these innovative technologies for the treatment of muscular dystrophies

    Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT-T1E

    Get PDF
    Bacterial membranes constitute the first physical barrier against different environmental stresses. Pseudomonas putida DOT-T1E accumulates cyclopropane fatty acids (CFAs) in the stationary phase of growth. In this strain the cfaB gene encodes the main cyclopropane synthase responsible of the synthesis of CFAs, and its expression is mediated by RNA polymerase with sigma factor σ38. We generated a cfaB mutant of P. putida DOT-T1E and studied its response to solvents, acid pH and other stress conditions such as temperature changes, high osmolarity and the presence of antibiotics or heavy metals in the culture medium. A CfaB knockout mutant was more sensitive to solvent stress than the wild-type strain, but in contrast to Escherichia coli and Salmonella enterica, the P. putida cfaB mutant was as tolerant to acid shock as the wild-type strain. The cfaB mutant was also as tolerant as the parental strain to a number of drugs, antibiotics and other damaging agents

    Ab initio study of the vapour-liquid critical point of a symmetrical binary fluid mixture

    Full text link
    A microscopic approach to the investigation of the behaviour of a symmetrical binary fluid mixture in the vicinity of the vapour-liquid critical point is proposed. It is shown that the problem can be reduced to the calculation of the partition function of a 3D Ising model in an external field. For a square-well symmetrical binary mixture we calculate the parameters of the critical point as functions of the microscopic parameter r measuring the relative strength of interactions between the particles of dissimilar and similar species. The calculations are performed at intermediate (λ=1.5\lambda=1.5) and moderately long (λ=2.0\lambda=2.0) intermolecular potential ranges. The obtained results agree well with the ones of computer simulations.Comment: 14 pages, Latex2e, 5 eps-figures included, submitted to J.Phys:Cond.Ma

    Spontaneous activity patterns in human motor cortex replay evoked activity patterns for hand movements

    Get PDF
    Spontaneous brain activity, measured with resting state fMRI (R-fMRI), is correlated among regions that are co-activated by behavioral tasks. It is unclear, however, whether spatial patterns of spontaneous activity within a cortical region correspond to spatial patterns of activity evoked by specific stimuli, actions, or mental states. The current study investigated the hypothesis that spontaneous activity in motor cortex represents motor patterns commonly occurring in daily life. To test this hypothesis 15 healthy participants were scanned while performing four different hand movements. Three movements (Grip, Extend, Pinch) were ecological involving grip and grasp hand movements; one control movement involving the rotation of the wrist was not ecological and infrequent (Shake). They were also scanned at rest before and after the execution of the motor tasks (resting-state scans). Using the task data, we identified movement-specific patterns in the primary motor cortex. These task-defined patterns were compared to resting-state patterns in the same motor region. We also performed a control analysis within the primary visual cortex. We found that spontaneous activity patterns in the primary motor cortex were more like task patterns for ecological than control movements. In contrast, there was no difference between ecological and control hand movements in the primary visual area. These findings provide evidence that spontaneous activity in human motor cortex forms fine-scale, patterned representations associated with behaviors that frequently occur in daily life
    corecore