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Abstract
Understanding the evolution of solute concentration gradients underpins the prediction of 
porous media processes limited by mass transfer. Here, we present the development of a 
mathematical model that describes the dissolution of spherical bubbles in two-dimensional 
regular pore networks. The model is solved numerically for lattices with up to 169 bubbles 
by evaluating the role of pore network connectivity, vacant lattice sites and the initial bub-
ble size distribution. In dense lattices, diffusive shielding prolongs the average dissolution 
time of the lattice, and the strength of the phenomenon depends on the network connectiv-
ity. The extension of the final dissolution time relative to the unbounded (bulk) case fol-
lows the power-law function, Bk∕� , where the constant � is the inter-bubble spacing, B is 
the number of bubbles, and the exponent k depends on the network connectivity. The solute 
concentration field is both the consequence and a factor affecting bubble dissolution or 
growth. The geometry of the pore network perturbs the inward propagation of the dissolu-
tion front and can generate vacant sites within the bubble lattice. This effect is enhanced by 
increasing the lattice size and decreasing the network connectivity, yielding strongly nonu-
niform solute concentration fields. Sparse bubble lattices experience decreased collective 
effects, but they feature a more complex evolution, because the solute concentration field is 
nonuniform from the outset.

Keywords Bubble dissolution · Porous media · Diffusive transport

1 Introduction

Growth and dissolution of gas bubbles are phenomena commonly encountered in various 
industrial and environmental applications that involve porous media. Understanding the 
evolution of bubble clusters and the associated collective effects is paramount to the effec-
tive design of the following exemplary processes. The structural integrity of concrete dur-
ing freeze-thaw cycles can be improved through the artificial entrainment of air bubbles 
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(Mayercsik et al. 2016). Preventing bubble nucleation and growth within nanoporous elec-
trodes used in electrochemical cells is key to preclude their mechanical failure (Kadyk 
et al. 2016). The nucleation of gas upon pressure depletion in producing oil reservoirs is a 
mechanism that can aid recovery by promoting the transport of reservoir fluids (Gao et al. 
2021). The long-term effectiveness of carbon dioxide subsurface storage relies on trapping 
a buoyant plume by capillary forces to form isolated bubbles in the pores of the rocks that 
will eventually dissolve in the surrounding fluid (Krevor et al. 2015). In these examples, 
the porous medium not only defines the framework that confines the bubbles, but it con-
trols their mobility and the transport of species between them.

The classical theory describing the dissolution of an isolated and stationary gas bub-
ble in a quiescent liquid was presented by Epstein and Plesset (1950). Briefly, the driving 
force for the dissolution process is given by the difference between the bubble’s surface 
concentration and the solute concentration in the diffusion boundary layer that is formed in 
the liquid surrounding the bubble. The surface concentration is proportional to the bubble’s 
internal pressure, which accounts for surface curvature effects through the contribution of 
the Laplace pressure. For the case where the volume of ambient liquid is sufficiently large, 
Epstein and Plesset (1950) derived an analytical expression for the dissolution flux, which 
can be used to estimate the temporal evolution of the bubble radius (see Sect. 2). Exten-
sions to this theory have been presented to describe the behaviour of a bubble attached at 
a flat surface (Enríquez et al. 2014; Peñas-López et al. 2015) or to account for confinement 
affects introduced by the presence lateral walls (Moreno Soto et al. 2020), as can be the 
case in some microfluidic devices.

When multiple bubbles are present in a quiescent liquid, collective effects appear as a 
result of the spatial and temporal evolution of the solute concentration field in the liquid 
surrounding the bubbles. Diffusive shielding is observed for neighbouring bubbles within 
close proximity (Weijs et al. 2012): a bubble is protected from dissolution as the local liq-
uid concentration rises upon dissolution of the neighbouring bubble. When the difference 
between the sizes of two neighbouring bubbles (and hence their surface concentration) is 
sufficiently large, Ostwald ripening can occur (Ostwald 1897), a process where the larger 
bubble grows at the expense of the smaller bubble (Lifshitz and Slyozov 1961; Voorhees 
1985; Schmelzer and Schweitzer 1987). Notably, a densely populated cluster of bubbles 
with initial uniform size can produce a characteristic dissolution pattern, where bubbles on 
the outer layer dissolve faster than those on the inner layers (Weijs et al. 2012; Laghezza 
et al. 2016). In such cases, the interplay between Ostwald ripening and diffusive shielding 
may give rise to situations where bubbles undergo periods of growth and dissolution alter-
nately, and layers no longer dissolve regularly (Michelin et al. 2018; Vega-Martínez et al. 
2020).

In contrast to the case of bubbles in bulk, collective effects of bubbles within porous 
media are relatively unexplored. The presence of the solid framework challenges the analy-
sis of these systems by introducing at least two controlling effects on the dissolution pro-
cess. First, the morphology of the pore space determines the gas-liquid interface curvature, 
meaning that an individual bubble can have more than one local curvature (Garing et al. 
2017). It follows that the size of the bubble is no longer sufficient to predict the bubble’s 
dissolution rate and situations may arise where smaller bubbles grow at the expense of 
larger bubbles (Xu et  al. 2017)—opposite to the classic Ostwald ripening. Moreover, it 
has been shown by means of experiments (Xu et al. 2017) and numerical models (Chal-
endar et al. 2018), that in porous media an equilibrium condition is possible where multi-
ple bubbles coexist—opposite to the behaviour of bubbles in bulk liquid (Schmelzer and 
Schweitzer 1987). The second controlling effect has so-far received limited attention and 
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is associated with the interplay between dissolution and transport fluxes in partially satu-
rated porous media. In fact, the disconnected phase is expected to act as highly effective 
disperser by increasing the tortuosity of transport paths in the liquid phase, limiting the 
dissolution rate and affecting the solute concentration field beyond the characteristic length 
scale of a pore-body. Quantifying this effect remains very challenging, because it is diffi-
cult to probe experimentally at the required spatial and temporal resolution concentrations 
of chemical species “hidden” in porous media.

In this work we develop a pore network model to investigate the collective dissolution of 
bubbles in regular porous media. Compared to previous work that also used a pore-network 
model, in our formulation we explicitly account for the accumulation of solute in the pores, 
enabling us to analyse the spatial and temporal evolution of the solute concentration field. 
Our focus in this study is on lattices consisting of bubbles smaller than one pore body. Our 
aim is to unravel the interplay between the evolution of the bubble cluster and of the sol-
ute concentration field. We present the derivation of the mathematical model that includes 
material balances for both the bubbles and the solute in the liquid phase. The model is 
solved to investigate a range of situations, including networks with distinct connectivity as 
well as lattices with nonuniform bubble distributions (in terms of both size and location).

2  Dissolution of an Isolated Bubble

Consider the case of an isolated single-component gas bubble surrounded by a quiescent 
incompressible liquid in an unbounded domain. The internal pressure of the bubble, Pb , 
is contributed by the pressure of the liquid, P0 , and the Laplace pressure, ΔP , which is 
inversely proportional to the bubble radius, R:

where � is the interfacial tension. Assuming ideal gas behaviour, an expression is found 
that relates the mass density of the gas within the bubble ρb  to the gas density at a planar 
interface �0:

where M is the gas molar mass, Rg is the universal gas constant and T is the temperature. 
Depending on the concentration of gas in the liquid, mass transfer across the gas-liquid 
interface occurs according to the following mass balance:

where m b is the mass of gas in the bubble and J the outward diffusive mass flux of gas 
across the bubble interface. Assuming spherical symmetry and neglecting inertial effects 
due to the motion of the bubble interface, this diffusive flux can be described by the follow-
ing expression (Epstein and Plesset 1950):

(1)Pb = P0 + ΔP = P0 +
2�

R

(2)�b = �0 +
2M�

RgTR

(3)
dmb

dt
= −4�R2J

(4)J = −D(C0 − Cs)

�
1

R
+

1√
�Dt

�
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where D is the diffusion coefficient of the gas-liquid pair and t is time; C0 is the constant 
gas concentration in the liquid far from the bubble interface, while Cs is the saturation con-
centration in equilibrium with the internal bubble pressure (i.e. the concentration at the 
interface). The latter is obtained from Henry’s law, such that Cs = kHMPb and where kH 
is the Henry’s constant. Accordingly, f = C0∕C0

s
 refers to the degree of liquid saturation 

relative to the saturation concentration of a planar interface C0
s
= kHMP0 . Equation 4 is a 

good approximation to describe the evolution of solute concentration around a dissolving 
bubble, because the motion of the fluid caused by the motion of the bubble has a negligible 
effect in these conditions (Epstein and Plesset 1950).

Noting that mb = 4∕3�R3�b and upon substitution of Eqs. 4 and 2 into Eq. 3, one obtains 
the expression for the rate of change in the bubble radius.

The transient term, 1∕
√
�Dt , related to the time needed for the gas concentration profile in 

the boundary layer to develop, has been dropped from Eq. 4 because it is negligibly small 
compared to the dissolution time, as demonstrated experimentally in Duncan and Needham 
(2004). Equation 5 can be integrated to yield the final dissolution time t∗

d
(R = 0) of a single 

isolated bubble of initial radius R0 in a gas-saturated liquid solution ( f = 1 ) (Duncan and 
Needham 2004):

We will use t∗
d
 throughout this work as the reference to quantify effects associated with 

the presence of a pore-network and a lattice of bubbles. We note that an important conse-
quence of Eqs. 1 and 5 is that a bubble can dissolve even if C0 > C0

s
 (i.e. f > 1 ). In fact, the 

liquid saturation at which a bubble is in equilibrium with the surrounding liquid depends 
on its initial radius:

Accordingly, a bubble is expected to grow if f > feq and dissolve if f < feq.

3  Pore Network Model for the Collective Dissolution of Bubbles

A pore-network model (PNM) is a computationally efficient framework to simulate flow and 
transport processes in porous media (Fatt 1956; Valvatne et al. 2005; Xiong et al. 2016). A 
PNM simplifies the void space of a given porous medium by a lattice of pore bodies connected 
by pore throats, describing them with simple geometries, e.g. spheres and cylinders, respec-
tively. The connectivity and distribution of throat and pore sizes determine the macroscopic 
flow and transport properties of the network, which are simulated using fundamental mass and 
momentum balance equations. Direct modelling approaches, such as the lattice Boltzmann 
method or density functional modelling, are computationally less efficient compared to PNM, 
particularly for problems that necessitate locating and tracking interfaces between fluid phases 
in complex geometries (Blunt et al. 2013). Another notable feature of PNM is that they can 
be solved for relatively large systems (with physical length of several centimetres), enabling 

(5)
dR

dt
= D(C0 − Cs)

(
�0 +

4M�

3RgTR

)−1
1

R

(6)t∗
d
=

(R0)2

3DkH

(
R0�0

2M�
+

1

RgT

)

(7)feq = 1 +
2�

R0P0
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the study of upscaling behaviours in porous media over the range from the pore- to the con-
tinuum-scale (Held and Celia 2001). PNMs are being increasingly used to predict two-phase 
flow properties (e.g. capillary pressure or relative permeability curves) (Joekar-Niasar et al. 
2008), and to simulate electrokinetic (Obliger et al. 2014; Gayon Lombardo et al. 2019) and 
reactive transport processes (Varloteaux et al. 2013; Mahmoodlu et al. 2020).

In this study, we develop and solve a PNM to simulate the collective dissolution of gas 
bubbles in regular pore networks partially filled with a quiescent liquid. We focus on a simple 
representation of the network, where spherical nodes and cylindrical edges represent the pore 
bodies and pore throats, respectively (Fig. 1). Unlike previous computational work on the evo-
lution of bubbles in porous media (Xu et al. 2017; Chalendar et al. 2018), we solely consider 
bubbles that are smaller than one pore body ( R < Rp for t ≥ 0 ), so as to ensure that they main-
tain a spherical shape throughout the dissolution process. This further implies that each bubble 
is immobile, its centre of mass coinciding with the centre of the pore body during the entire 
dissolution or growth process. This is an important simplification of our approach, because we 
neglect interactions between the bubble and the solid surface, which in turn lead to the forma-
tion of non-spherical bubbles that are characterised by a distribution of curvatures. However, 
the simplification allows us to reduce the numerical complexity of the problem and to explore 
relatively large networks of bubbles, while accounting explicitly for the inter-bubble transport 
of dissolved species. To this end, we consider two physical mechanisms which occur as a bub-
ble dissolves in a pore body, namely i) mass exchange at the bubble/liquid interface and ii) 
diffusive transport of the dissolved gas between neighbouring pore bodies. We further assume 
isothermal conditions, ideal gas behaviour, and negligible inertial effects. At any given time, 
the concentration of the liquid within a pore body is assumed to be uniform. This assumption 
holds when

where tdif f is a time scale for solute diffusion across a pore body of radius Rp . This condi-
tion is satisfied for the fluid pair considered in this study, namely nitrogen and water at 
ambient conditions (temperature of 298 K and absolute pressure of 101.325 kPa), because 
tdif f ∕t

∗
d
< 0.1 when Rp ≤ 12.

(8)tdif f = R2
p
∕D ≪ t∗

d

(a) (b)

Fig. 1  Basic elements of the pore network model developed in this study. (a) Two spherical pore bodies 
of radius Rp are filled with a liquid of uniform solute concentration ( Cp,i and Cp,j , respectively). These are 
connected to other pore bodies through four cylindrical throats of length Lt to form a larger pore network 
of connectivity, Nt = 4 . Pore body i contains a spherical gas bubble of radius Ri , density �i and equilibrium 
surface concentration Cs,i . (b) Drawings of the three pore connectivity structures considered in this study, 
namely Nt = {4, 6, 8}
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3.1  Material Balances

Consider a stationary gas bubble i of radius Ri within a pore body i of volume Vp,i , which is 
connected to Nt,i pore bodies, as depicted in Fig. 1. We can write the following material bal-
ance for the solute in pore body i:

where md = Cp(Vp − 4�R3∕3) and mb = 4�R3�b∕3 are the mass of solute in the liquid and 
gas phase, respectively. The second term on the right-hand side of the equation refers to the 
mass transfer by solute diffusion between adjacent pore bodies and includes a summation 
over Nt,i pore body pairs ( At and Lt are the cross-sectional area and length of the throat con-
necting two pore bodies). The rate of change in mass of solute in the liquid and gas phase is 
expressed as follows:

where the evolution of the bubble radius is given by Eq. 5 upon replacing C0 with Cp , i.e.:

In contrast to Eq. 5, where C0 is treated as a constant, the temporal evolution of dissolved 
solute concentration in pore i, Cp,i , is thus obtained by combining Eq. 10 with Eq. 9:

where �i = (Vp − 4�R3
i
∕3)∕Vp is the volume fraction of pore i occupied by the liquid phase.

3.2  Numerical Implementation

Equations 11 and 12 represent the system of coupled differential equations to be solved for 
the two variables Cp,i and Ri in a given pore body. For a network of P pore bodies, this set of 
equations has to be solved simultaneously for all pore bodies at each time step. To solve these 
equations numerically, we represent the pore network using graph theory and rewrite Eq. 12 in 
vector form:

where �̇p, �,�p , � and �̇ are (P × 1) vectors that include the elements of dCp,i

dt
, �i,Cp,i,Ri and 

dRi

dt
 , respectively. L is a (P × P) Laplacian matrix defined as follows:

(9)
dmd,i

dt
= −

dmb,i

dt
− D

∑
j≠i

At

Lt
(Cp,i − Cp,j)

(10)

dmd,i

dt
=
(
Vp −

4

3
�R3

i

)dCp,i

dt
− 4�R2Cp,i

dRi

dt
dmb,i

dt
= 4�R2

i

(
�0 +

4M�

3RgTRi

)
dRi

dt

(11)
dRi

dt
= D(Cp,i − Cs,i)

(
�0 +

4M�

3RgTRi

)−1
1

Ri

(12)
dCp,i

dt
= −D

At

Lt�iVp

∑
j≠i

(Cp,i − Cp,j) −
4�R2

i

�iVp

dRi

dt

(
�0 +

4M�

3RgTRi

− Cp,i

)

(13)�̇p = −D
At

VpLt
�
−1 ⊙ (L ∙ �p) +

4𝜋

Vp

�
−1 ⊙ �

2 ⊙ �̇⊙ (𝜌0 +
4M𝛾

3RgT
�

−1 − �p)
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The resulting system of ordinary differential equations is solved using the ode45 solver 
in MATLAB with a relative error tolerance ‘RelTol’ = 10−8 and absolute error toler-
ances on the variables R and Cp of 10−4�m and 10−10kg/m3 . For the variable R the Non-
Negative option is additionally implemented. We consider regular pore-networks with 
uniform pore and throat dimensions (see Table 1). At t = 0 , the concentration of the liq-
uid phase is uniform throughout the network and takes a value corresponding to a satura-
tion f = 1 , i.e. Cp(t = 0) = C0

p
= C0

s
 . The simulation is initialised by populating the centre 

of the network with a lattice of bubbles with either uniform size, R0 , or with an initial 
size distribution; the lattice may or may not contain vacant sites. For the calculations pre-
sented in this work the ratio pore body radius to initial bubble radius is chosen in the range 
2.5 ≤ Rp∕R

0 ≤ 12 , thereby ensuring that the condition R < Rp is met for the duration of the 
simulation. An open boundary condition is imposed by setting the radius of the pore bodies 
in the outermost layer of the network to a value 100 × Rp . The model was validated against 
the Epstein-Plesset equation (Eq. 5) for the case of a single bubble dissolution in a large 
pore body ( Rp∕R

0 = 100 ). For all the simulations reported in this study, a negligible error 
( < 10−10% ) is observed in the material balance computed at each time step.

4  Results

We will first consider the case of a single, isolated bubble in a pore network and com-
pare the numerical results to those obtained for an unconfined bubble. We will then present 
situations featuring regular arrangements of bubble lattices of different sizes within pore 

(14)Li,j =

⎧
⎪⎨⎪⎩

Nt,i i = j

−1 i ≠ j & pore i is connected to pore j

0 i ≠ j & pore i is not connected to pore j

Table 1  Input parameters for the 
pore network simulation in this 
study

aSander (2015)
 bBell et al. (2014)
 cCadogan et al. (2014)

Parameter Value

Pressure [Pa] P
0 101’325

Temperature [K] T 298.15
Radius of pore body [�m] Rp 2.5
Initial saturation of liquid [−] f 1
Initial bubble radius [�m] R

0 1
Throat length [�m] L

t
2

Throat radius [�m] R
t

1.5
Henry’s constanta[mol∕Pa∕m3] kH 6.4 × 10

−6

Interfacial tensionb[N∕m] � 0.0721
Diffusion coefficientc[m2∕s] D 1.93 × 10

−9

Gas densitya[kg∕m3] �0 1.145
Molecular weighta[kg∕mol] M 0.028
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networks of different connectivity. These cases will be analysed in light of the evolving 
bubble size distribution and solute concentration field.

4.1  Dissolution of a Single Bubble in a Pore Network

The evolution of the normalised bubble radius, z = R∕R0 , is plotted in Fig. 2 as a func-
tion of the normalised dissolution time, � = td∕t

∗
d
 , in (a) the absence and in (b) the pres-

ence of a pore network surrounding the bubble ( Nt = 6 ). In each plot, the different 
lines refer to simulations carried out for different values of the initial liquid saturation, 
f 0 = C0

p
∕kHMwP

0 (above and below the so-called threshold saturation, feq(R0) = 2.4 ). As 
expected, in both cases the bubble dissolves completely when f < feq and it grows when 
f > feq . We note that the simulations with a pore network are limited to situations where 
z < Rp∕R

0 , because we do not consider in this study bubbles that grow beyond the size of 
a single pore body. In both cases, the dissolution curves indicate a characteristic accel-
eration, which originates from the increase in the Laplace pressure as the bubble radius 
decreases. The solute concentration in the liquid, Cp , is largely unaffected by the dissolu-
tion (or growth) of the bubble, because the volume of the liquid is much larger than the 
volume of the bubble. Accordingly, upon dissolution the normalised concentration differ-
ence, Δc = (Cs − Cp)∕|C0

s
− C0

p
| , increases and mirrors the pattern outlined by the evolu-

tion of the bubble radius (Fig. 2d and e). The same applies for the growth curves, albeit the 
evolution of z (or Δc ) is significantly slower. The main difference between the unbounded 
and the confined case is that the presence of the pore network extends the lifetime of the 
bubble, because solute transport can occur only through pore throats. For f 0 = 2.2 and 
Rp∕R

0 = 2.5 , the dissolution time of the bubble in the network is up to 1.6 times larger than 
its unbounded counterpart. As one would expect, the effect of confinement reduces with 

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 2  Temporal evolution of the dimensionless bubble radius z (top row) and of the normalised con-
centration difference Δc (bottom row) for an isolated bubble in a liquid.  (a)  and (d): unconfined bub-
ble, liquid at different initial saturation values, f 0 . (b) and (e): bubble in a pore network ( Nt = 6 and 
Rp∕R

0 = 2.5 ), liquid at different initial saturation values, f 0 . (c) and (f): bubble in a pore network ( Nt = 6 , 
Rp∕R

0 = {1.2, 2.5, 4.2, 12} ), liquid at initial saturation f 0 = 1
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increasing pore body size (Fig. 2c and f) and our simulations show that the effect becomes 
negligible beyond Rp∕R

0 = 12 . An analogous effect arising from a reduction in available 
mass transfer area has been reported for a bubble in contact with a non-permeable surface 
(Weijs and Lohse 2013; Peñas-López et al. 2015).

4.2  Dissolution of a Bubble Lattice in a Pore Network

The results discussed above are extended here to a situation where a dense cluster of 
19 bubbles with uniform initial size is arranged in the centre of a regular pore network 
( Nt = 6 , Rp∕R

0 = 2.5 and f 0 = 1 ). We use NL to denote the size of the lattice, i.e. in this 
case, the bubble cluster with two layers is denoted as NL = 2 . Figure 3a illustrates the ini-
tial arrangement of the 19 bubbles ( � = 0 ) and the spatial evolution of the normalised sol-
ute concentration field, cp = Cp∕C

0
p
 , at three distinct times ( � = 2, 3, 4.5 ). Upon dissolution, 

the solute plume expands radially, while the dissolution front propagates in the opposite 
direction, meaning that bubbles in the outermost layer of the original lattice dissolve first. 
The inward propagation of the dissolution front is the manifestation of the so-called dif-
fusive shielding effect (Michelin et  al. 2018), which sustains a larger solute concentra-
tion in the centre of the original bubble lattice and reduces the dissolution rate of bubbles 
located there. A closer inspection of Fig. 3a also reveals that bubbles in a given layer do 
not necessarily dissolve at the same time (see panel at � = 3 , where the outermost layer 
of bubbles shows partial dissolution). These results demonstrate that despite having the 
same initial radius, the lifetime of each bubble depends strongly on its location relative to 
its neighbours. In Fig. 3b are shown four characteristic dissolution curves associated with 

Fig. 3  Dissolution of B = 19 bubbles of equal initial radius ( R0 = 1 � m) arranged to form a hexagonal lat-
tice in a regular pore network ( Nt = 6 ) with initial liquid saturation, f 0 = 1 . (a) Evolution of the solute con-
centration field in the pore network at four different dimensionless times, t = {0, 2, 3, 4.5} (the colour scale 
indicates the normalised solute concentration in each pore body and a black circle indicates the presence of 
a bubble). (b) Temporal evolution of the dimensionless bubble radius z and (c) of the normalised concentra-
tion difference Δc for four representative bubbles (the colour of each curve refers to the location of the bub-
ble shown in the inset)
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this specific bubble lattice. It can be seen that depending on their location (indicated by the 
colour-coding), a bubble can undergo periods of dissolution and growth alternately, before 
dissolving completely. As anticipated above, the reason for this is the local development of 
the solute concentration in the pore network, as shown by the solute concentration curves 
for the same four pore bodies plotted in Fig. 3c. Here, Δc > 0 for a dissolving bubble, but 
Δc may also alternate between positive (dissolution) and negative (growth) values for bub-
bles located in the inner layers of the lattice experiencing diffusive shielding. We observe 
that the final dissolution time of the central bubble is approximately six times larger than 
the value observed for a single bubble in the same pore network. Collective effects can thus 
have a significant influence on the lifetime of a given bubble in the lattice.

4.3  Bubble Lattices in Pore Networks with Distinct Connectivity

The results presented above highlight the role of network connectivity in the dissolution 
process by controlling the rate at which the solute plume dissipates through the system. 
In the following, we examine the effect of connectivity in more detail by studying the 
spatial and temporal evolution of a square lattice of 121 bubbles with uniform initial size 
arranged in regular pore-networks ( Rp∕R

0 = 2.5 and f 0 = 1 ) with two different connectiv-
ity values, namely Nt = 4 and Nt = 8 . Snapshots of the evolving solute concentration field 
in these two pore networks are presented in Fig. 4a ( Nt = 4 ) and Fig. 4b ( Nt = 8 ). Again, 
we observe that the solute plume expands radially as time progresses and the bubbles dis-
solve. However, in contrast with the previous case, the propagation of the dissolution front 
is less obvious, whereby some bubbles located in the inner layers of the original square 
lattice dissolve faster than some of those located in the outer layers, generating lattices 
with vacant sites. This characteristic dissolution pattern, referred to as “leap-frogging", has 
been reported previously for dense two-dimensional bubble lattices in bulk (Michelin et al. 
2018). Here, the presence of the pore-network introduces an additional level of complexity, 
because the discrete connectivity of bubbles perturbs the shielding effect and leads to irreg-
ular dissolution patterns of the lattice. Bubbles act both as sources and sinks for dissolved 
species and network connectivity controls the rate at which a pore body can reach a satura-
tion sufficient to reverse the dissolution process relative to the rate at which the solute can 
dissipate out of the pore-network. As a result of this competition, the pore-network with 
Nt = 4 shows a slower solute dissipation and bubble dissolution rate than Nt = 8 (at least 
a factor of two slower, as indicated by the evolution of the average solute concentration in 
Figure S1, Supporting Information). Most notably, the reduced number of connections in 
Nt = 4 between pore bodies generates bubble lattices with more vacant sites as dissolution 
progresses, leading to a more heterogeneous solute concentration field, as compared to the 
case with Nt = 8.

Bi-dimensional maps of the bubbles’ order of dissolution are shown in Fig. 5 for the 
lattice with five layers described above ( NL = 5 ) in the two pore-networks ( Nt = 4 and 
Nt = 8 ), alongside results for three additional lattices, namely NL = 3, 4 and 6. It can be 
seen that increasing the lattice size and decreasing the network connectivity both lead to 
stronger perturbations in the propagation of the dissolution front. While for NL = 3 , the 
two networks generate an almost identical order of dissolution, differences are readily 
apparent for larger lattices. Yet, the alternation of the order of dissolution between succes-
sive bubble layers (the “leap-frogging” effect (Michelin et  al. 2018)) is the strongest for 
the network with Nt = 4 , while a pattern that approximates a uniform radial dissolution 
front is still observed for the largest lattice in the network with Nt = 8 . The reduced solute 
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diffusivity through the network increases the lifetime of bubbles and provides the opportu-
nity for the bubbles to grow, as shown by the z − t curves plotted in Fig. 6a ( Nt = 4 ) and 
Fig. 6b ( Nt = 8 ) for a selection of representative bubbles (their colour coding refers to the 
lattice with NL = 5 shown in Fig. 5). It can be seen that bubbles may experience significant 
growth (up to z ≈ 2.1 for Nt = 4 and z ≈ 1.4 for Nt = 8 ) before dissolving completely. For 

Fig. 4  Evolution of the solute concentration field generated by the dissolution of a square lattice of B = 121 
bubbles ( R0 = 1 � m) arranged in a regular pore network ( Rp∕R

0 = 2.5 ) with (a) Nt = 4 and (b) Nt = 8 con-
nections, and filled with liquid at initial saturation, f 0 = 1 . The colour scale indicates the normalised solute 
concentration in each pore body and a black circle indicates the presence of a bubble. The dimensionless 
time, � , and the normalised average solute concentration in the network, cp , are given on top of each panel
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the case with Nt = 4 , the largest bubble reaches a size z ≈ Rp∕R0 = 2.5 , further indicating 
that for a large bubble lattice within a porous medium with low connectivity, it may be pos-
sible for bubbles to grow beyond the size of a single pore body.

5  Discussion

We have established that the dissolution behaviour of bubbles in pore networks is highly 
affected by the collective interaction between the bubbles and by the diffusive transport 
in the liquid surrounding them. The presence of the pore-network extends the lifetime of 
bubbles relative to the unbounded (bulk) case and the network connectivity determines the 
strength of this effect. Similar to the situation of a bubble lattice in an unbounded bulk 
liquid, our results show complete dissolution of bubbles. The reason for this behaviour is 
twofold. First, the volume fraction of the gas compared to the liquid is relatively small and 
we only consider here networks with an open boundary. Secondly, while we do consider 
the presence of a pore-network, in our model formulation we do not allow for interactions 
between a bubble and the solid surface. As such, the model cannot capture certain realistic 
scenarios, in which bubbles can grow beyond a pore body or feature multiple local cur-
vatures, and in which a stable coexistence of multiple bubbles can be observed (Xu et al. 
2017). Examples of such systems include the nucleation and growth of bubbles in oil fields 
operated below the bubble point (Gao et al. 2021) or the trapping of gas ganglia follow-
ing the injection of CO2 for subsurface storage (Andrew et al. 2013). In these and other 
applications, the dissolution or growth of bubbles does not solely depend on their morphol-
ogy, but also on the local spatial structure of the solute concentration field. The latter is 
largely determined by the distribution of local liquid/gas interface curvatures, which has 
been introduced in our model by considering bubbles of different sizes. The measurement 
of chemical concentration gradients in porous media remains an experimental challenge 
and pore-network models can go a long-way in addressing this problem. In this context, 

(b)

(a)

Fig. 5  The order of dissolution of bubbles ( R0 = 1 � m) that initially form a square lattice of size 
NL = {3, 4, 5, 6} arranged in a regular pore network ( Rp∕R

0 = 2.5 ) with (a) 4 and (b) 8 connections, and 
filled with liquid at initial saturation, f 0 = 1
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we envisage a future formulation of the model, where both effects (complex bubble mor-
phology and local development of solute concentration) are explicitly accounted for. In the 
discussion that follows, we extend an available correlation for the final dissolution time of 
unbounded bubbles to bubbles in pore networks. Bubbles lattices of practical relevance are 
considered next, such as those that contain vacant sites and bubbles of initial varying size.

5.1  Lattice Size and Final Dissolution Time

As shown by Michelin et al. (2018) for two-dimensional lattice of bubbles suspended in 
a liquid, the maximum gain in the lifetime of a bubble scales as B0.5∕� , where B is the 
total number of bubbles in the lattice and � is the spacing between bubbles normalised by 
the initial radius. We extend here the analysis to pore networks containing a square lat-
tice of bubbles and compute the final dissolution time relative to the value observed for 
a single unbounded bubble, �max − 1 . The results are shown in Fig. 7 for lattices of differ-
ent size B and for two pore networks ( Nt = 4 and Nt = 8 ). The results presented here are 
obtained for pore networks with � = 7 , thus are fitted to the power law: Bk∕7 . We obtain 
k = 1.5 and k = 1.2 for Nt = 4 and Nt = 8 , respectively, indicating that collective effects in 
a pore network produce a stronger increase in the lifetime of bubbles and that the strength 
of this effect is inversely proportional to the pore-network connectivity. In this context, the 
unbounded case ( k = 0.5 ) is equivalent to an infinite number of connections between bub-
bles and can thus be regarded as the theoretical lower limit for the final dissolution time.

5.2  Dissolution of Bubble Lattices with Vacant Sites

To analyse collective dissolution effects for bubble lattices with vacant sites, we consider a 
6-connection pore-network ( Nt = 6 ) in which B = 19 bubbles of uniform size are arranged, 
so as to cover an increasingly large domain area. Four examples of these arrangements are 
shown in Fig. 8a and are characterised by distinct values of the dimensionless parameter d, 
which represents the average distance between the bubbles and the lattice’s centroid:

Fig. 6  The temporal evolution of the dimensionless bubble radius z as a function of the dimensionless time, 
� , for eight representative bubbles of a square lattice ( R0 = 1 � m, B = 121 and NL = 5 ) arranged in a two-
dimensional regular pore network ( Rp∕R

0 = 2.5 ) with (a) Nt = 4 and (b) Nt = 8 connections and filled with 
a liquid a initial saturation, f 0 = 1 . The colour of each curve refers to the location of the bubble, as shown 
in Figure 5a and b ( NL = 5)
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where {xc, yc} and {xi, yi} are the coordinates of the centroid for the lattice and for bubble i, 
while Lt is the pore-throat length. Accordingly, the smallest domain that can be generated 
in this pore-network is a lattice with two layers ( NL = 2 ) and an average distance d = 1.5 

(15)d =
1

BLt

B∑
i=1

√
(xi − xc)

2 + (yi − yc)
2

Fig. 7  The maximum lifetime gain of a bubble, �max − 1 , as a function of the number of bubble B in a 
square lattice arranged in a two-dimensional regular pore-network filled with liquid at initial saturation, 
f 0 = 1 ( R0 = 1 � m, Rp∕R

0 = 2.5 , NL = {0, 1, 2, 3, 4, 5, 6} . Square and circle markers refer to results 
obtained for a pore-network with Nt = 4 and Nt = 8 connections, respectively. The dashed curves are 
obtained upon fitting a power-law function, Bk∕� , to the simulation results, where the inter-bubble spacing, 
� = 7 . The solid line refers to the lifetime gain of a bubble in lattices of unbounded bubbles with an equiva-
lent inter-bubble spacing of 7R0 (Michelin et al. 2018)

(b)(a)

Fig. 8   (a) A selection of four lattices ( B = 19 , R0 = 1� m ) of bubbles randomly arranged in a two-dimen-
sional regular pore-network ( Nt = 6 , Rp∕R

0 = 2.5 ). The four cases occupy an area equivalent to a dense 
lattice with NL = 2 (top left), 3 (top right), 4 (bottom left) and 4 (bottom right), and are characterised by 
distinct values of the dimensionless parameter  d (see Eq. 15, values given on top of each panel). (b) The 
average dissolution time of bubble lattices with vacant sites but constant number of bubbles ( B = 19 ) as a 
function of d (initial liquid saturation, f 0 = 1 . For each simulation, the whiskers represent the maximum 
and minimum lifetime of the bubble population. The horizontal dashed line represents the dimensionless 
dissolution time of an isolated bubble in the same pore-network ( � ≈ 1.5 ). The magenta line is an exponen-
tial function, ln � = ln 7.05 − 0.36d , fitted to the simulation results obtained for d ≤3.5
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(each bubble is separated from its neighbour by exactly one pore-throat length, top left 
panel in Fig. 8a). The average dissolution time of the lattice is computed as follows:

where td,i is the dissolution time of bubble i and t∗
d
(R0

i
) is the dissolution time of an uncon-

fined bubble of size R0
i
 in bulk.

In Fig. 8b the average dissolution time, � (solid markers), is plotted as a function of the 
average distance, d, for all the realisations, together with the maximum and minimum dis-
solution times for selected realisations plotted as the whiskers. It can be seen that denser 
lattices yield a larger average dissolution time, but also the largest spread among the maxi-
mum and minimum dissolution times within the lattice. Moreover, the decrease in average 
dissolution time follows an exponential decay up to d ≈ 3.5 , as described by the function 
ln � = ln 7.05 − 0.36d (solid magenta line). Collective effects become negligible for d > 6 , 
where � approaches the value for a single bubble in a pore network (see Fig. 2c and f).

The evolution of a bubble lattice that contains vacant sites and an initial bubble size dis-
tribution (see Supporting Information, Section S2) becomes increasingly more complex, as 
indicated by one exemplar realisation depicted in Fig. 9. Here, we observe that the lattice 
no longer features a dissolution front that propagates by and large from the outer perimeter 
of the lattice to its center. This behaviour is also reflected in the evolution of solute con-
centration field, which is spatially nonuniform from the outset and evolves in a manner that 
may affect the position of the centre of mass of the solute plume. As quantified by the aver-
age bubble dissolution time (Fig. S2), collective effects are extended to lager values of the 

(16)� =
1

B

B∑
i=1

td,i

t∗
d
(R0

i
)

Fig. 9  Evolution of the solute concentration field generated by the dissolution of a sparse hexagonal lattice 
of B = 19 bubbles with normally distributed initial radius ( R

0

= 1 � m) arranged in a regular pore network 
( Rp∕R

0 = 2.5 ) with Nt = 6 connections, and filled with liquid at initial saturation, f 0 = 1 . This case cor-
responds to the schematic shown on the top right corner of Figure S2a (Supporting Information).The colour 
scale indicates the normalised solute concentration in each pore body and a black circle indicates the pres-
ence of a bubble. The dimensionless time, � , is given on top of each panel
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parameter d relative to a lattice with a uniform initial bubble size distribution, as a result of 
a larger spread of the local (bubble) dissolution time.

6  Conclusions

We have studied the collective dissolution of bubbles in regular pore networks partially 
saturated with a quiescent liquid. In our approach, we used a pore network model that 
accounts for mass exchange between the gaseous and liquid phase, and for the diffusive 
transport of the dissolved gas in the liquid phase. The latter plays a key role in control-
ling the evolution of bubble lattices, because the development of local concentrations in 
the liquid phase determines whether a bubble will grow or dissolve. Similar to previously 
reported observations of bubbles dissolving in bulk liquid, we observe diffusive shield-
ing, a phenomenon that can extend the final dissolution time of bubble lattices. In a pore 
network, the strength of diffusive shielding depends on the connectivity of the network, in 
addition to the location of a bubble relative to its neighbours. We quantify this phenom-
enon and observe that the final dissolution time of a bubble lattice scales as Bk , where B is 
the number of bubbles in the lattice and k is a parameter that depends on the network con-
nectivity. Notably, the presence of the pore network perturbs the shielding effect, leading to 
irregular dissolution patterns of the lattice and to the generation of nonuniform solute con-
centration fields, even when the lattice is made of bubbles of uniform size. These effects 
are augmented for bubble lattices of practical relevance, such as those that contain vacant 
sites and bubbles of initial varying size, because the solute concentration field is nonu-
niform from the outset. While the focus in this study has been on regular pore networks 
featuring spherical bubbles, the presented approach is generally applicable and could 
be extended to account for irregularly shaped bubbles and networks with more complex 
geometries. In such heterogeneous porous media, the resultant saturation re-distribution of 
gas and liquid phases may extend beyond the characteristic length scale of a pore-body (Li 
et al. 2020). In this context, pore-network models offer an opportunity to study the complex 
interplay between dissolution and transport fluxes at the pore-scale for large bubble popu-
lations, enabling consistent upscaling to be performed.
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